IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

USLV: Unspanned Stochastic Local Volatility Model

  • Igor Halperin
  • Andrey Itkin

We propose a new framework for modeling stochastic local volatility, with potential applications to modeling derivatives on interest rates, commodities, credit, equity, FX etc., as well as hybrid derivatives. Our model extends the linearity-generating unspanned volatility term structure model by Carr et al. (2011) by adding a local volatility layer to it. We outline efficient numerical schemes for pricing derivatives in this framework for a particular four-factor specification (two "curve" factors plus two "volatility" factors). We show that the dynamics of such a system can be approximated by a Markov chain on a two-dimensional space (Z_t,Y_t), where coordinates Z_t and Y_t are given by direct (Kroneker) products of values of pairs of curve and volatility factors, respectively. The resulting Markov chain dynamics on such partly "folded" state space enables fast pricing by the standard backward induction. Using a nonparametric specification of the Markov chain generator, one can accurately match arbitrary sets of vanilla option quotes with different strikes and maturities. Furthermore, we consider an alternative formulation of the model in terms of an implied time change process. The latter is specified nonparametrically, again enabling accurate calibration to arbitrary sets of vanilla option quotes.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: Latest version
Download Restriction: no

Paper provided by in its series Papers with number 1301.4442.

in new window

Date of creation: Jan 2013
Date of revision: Mar 2013
Handle: RePEc:arx:papers:1301.4442
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Puzanova, Natalia, 2011. "A hierarchical model of tail dependent asset returns for assessing portfolio credit risk," Discussion Paper Series 2: Banking and Financial Studies 2011,16, Deutsche Bundesbank, Research Centre.
  2. Geman, Hélyette & Carr, Peter & Madan, Dilip B. & Yor, Marc, 2003. "Stochastic Volatility for Levy Processes," Economics Papers from University Paris Dauphine 123456789/1392, Paris Dauphine University.
  3. Peter Carr & Liuren Wu, 2002. "Time-Changed Levy Processes and Option Pricing," Finance 0207011, EconWPA.
  4. Mark Britten-Jones & Anthony Neuberger, 2000. "Option Prices, Implied Price Processes, and Stochastic Volatility," Journal of Finance, American Finance Association, vol. 55(2), pages 839-866, 04.
  5. Igor Halperin, 2009. "Implied Multi-Factor Model for Bespoke CDO Tranches and other Portfolio Credit Derivatives," Papers 0910.2696,
  6. Xavier Gabaix, 2007. "Linearity-Generating Processes: A Modelling Tool Yielding Closed Forms for Asset Prices," NBER Working Papers 13430, National Bureau of Economic Research, Inc.
  7. Pierre Collin-Dufresne & Robert S. Goldstein, 2002. "Do Bonds Span the Fixed Income Markets? Theory and Evidence for Unspanned Stochastic Volatility," Journal of Finance, American Finance Association, vol. 57(4), pages 1685-1730, 08.
  8. Mario Cerrato & Chia Chun Lo & Konstantinos Skindilias, 2011. "Adaptive continuous time Markov chain approximation model to general jump-diffusions," Working Papers 2011_16, Business School - Economics, University of Glasgow.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:arx:papers:1301.4442. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.