IDEAS home Printed from https://ideas.repec.org/p/zbw/bubdp2/201116.html
   My bibliography  Save this paper

A hierarchical model of tail dependent asset returns for assessing portfolio credit risk

Author

Listed:
  • Puzanova, Natalia

Abstract

This paper introduces a multivariate pure-jump Lévy process which allows for skewness and excess kurtosis of single asset returns and for asymptotic tail dependence in the multivariate setting. It is termed Variance Compound Gamma (VCG). The novelty of my approach is that, by applying a two-stage stochastic time change to Brownian motions, I derive a hierarchical structure with different properties of inter- and intra-sector dependence. I investigate the properties of the implied static copula families and come to the conclusion that they are ordered with respect to their parameters and that the lower-tail dependence of the intra-sector copula is increasing in the absolute values of skewness parameters. Furthermore, I show that the joint characteristic function of the VCG asset returns can be explicitly given as a nested Archimedean copula of their marginal characteristic functions. Applied to credit portfolio modelling, the framework introduced results in a more conservative tail risk assessment than a Gaussian framework with the same linear correlation structure, as I show in a simulation study. To foster the simulation efficiency, I provide an Importance Sampling algorithm for the VCG portfolio setting.

Suggested Citation

  • Puzanova, Natalia, 2011. "A hierarchical model of tail dependent asset returns for assessing portfolio credit risk," Discussion Paper Series 2: Banking and Financial Studies 2011,16, Deutsche Bundesbank.
  • Handle: RePEc:zbw:bubdp2:201116
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/57784/1/715108336.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Carlo Acerbi & Dirk Tasche, 2001. "Expected Shortfall: a natural coherent alternative to Value at Risk," Papers cond-mat/0105191, arXiv.org.
    2. Carlo Acerbi & Dirk Tasche, 2002. "Expected Shortfall: A Natural Coherent Alternative to Value at Risk," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 379-388, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Igor Halperin & Andrey Itkin, 2013. "USLV: Unspanned Stochastic Local Volatility Model," Papers 1301.4442, arXiv.org, revised Mar 2013.

    More about this item

    Keywords

    Portfolio Credit Risk; Stochastic Time Change; Brownian Subordination; Jumps; Tail Dependence; Hierarchical Dependence Structure;

    JEL classification:

    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:bubdp2:201116. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics). General contact details of provider: http://edirc.repec.org/data/dbbgvde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.