IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v25y2021i4d10.1007_s00780-021-00461-8.html
   My bibliography  Save this article

Additive logistic processes in option pricing

Author

Listed:
  • Peter Carr

    (NYU Tandon School of Engineering)

  • Lorenzo Torricelli

    (University of Parma)

Abstract

In option pricing, it is customary to first specify a stochastic underlying model and then extract valuation equations from it. However, it is possible to reverse this paradigm: starting from an arbitrage-free option valuation formula, one could derive a family of risk-neutral probabilities and a corresponding risk-neutral underlying asset process. In this paper, we start from two simple arbitrage-free valuation equations, inspired by the log-sum-exponential function and an ℓ p $\ell ^{p}$ vector norm. Such expressions lead respectively to logistic and Dagum (or “log-skew-logistic”) risk-neutral distributions for the underlying security price. We proceed to exhibit supporting martingale processes of additive type for underlying securities having as time marginals two such distributions. By construction, these processes produce closed-form valuation equations which are even simpler than those of the Bachelier and Samuelson–Black–Scholes models. Additive logistic processes provide parsimonious and simple option pricing models capturing various important stylised facts at the minimum price of a single market observable input.

Suggested Citation

  • Peter Carr & Lorenzo Torricelli, 2021. "Additive logistic processes in option pricing," Finance and Stochastics, Springer, vol. 25(4), pages 689-724, October.
  • Handle: RePEc:spr:finsto:v:25:y:2021:i:4:d:10.1007_s00780-021-00461-8
    DOI: 10.1007/s00780-021-00461-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00780-021-00461-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00780-021-00461-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    3. Peter Carr & Hélyette Geman & Dilip B. Madan & Marc Yor, 2003. "Stochastic Volatility for Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 345-382, July.
    4. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    5. Mandelbrot, Benoit B, 1972. "Correction of an Error in "The Variation of Certain Speculative Prices" (1963)," The Journal of Business, University of Chicago Press, vol. 45(4), pages 542-543, October.
    6. Dilip B. Madan & King Wang, 2020. "Additive Processes with Bilateral Gamma Marginals," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(3), pages 171-188, May.
    7. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    8. Carr, Peter & Madan, Dilip B., 2005. "A note on sufficient conditions for no arbitrage," Finance Research Letters, Elsevier, vol. 2(3), pages 125-130, September.
    9. Alan L. Lewis, 2001. "A Simple Option Formula for General Jump-Diffusion and other Exponential Levy Processes," Related articles explevy, Finance Press.
    10. Stefanski, Leonard A., 1991. "A normal scale mixture representation of the logistic distribution," Statistics & Probability Letters, Elsevier, vol. 11(1), pages 69-70, January.
    11. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    12. Hélyette Geman & Dilip B. Madan & Marc Yor, 2001. "Time Changes for Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 11(1), pages 79-96, January.
    13. Jouini,E. & Cvitanic,J. & Musiela,Marek (ed.), 2001. "Handbooks in Mathematical Finance," Cambridge Books, Cambridge University Press, number 9780521792370, Enero-Abr.
    14. Vicky Henderson & David Hobson & Tino Kluge, 2007. "Is there an informationally passive benchmark for option pricing incorporating maturity?," Quantitative Finance, Taylor & Francis Journals, vol. 7(1), pages 75-86.
    15. Mark H. A. Davis & David G. Hobson, 2007. "The Range Of Traded Option Prices," Mathematical Finance, Wiley Blackwell, vol. 17(1), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michele Azzone & Roberto Baviera, 2023. "Is (independent) subordination relevant in option pricing?," Papers 2307.08628, arXiv.org, revised Oct 2023.
    2. Michele Azzone & Roberto Baviera, 2021. "A fast Monte Carlo scheme for additive processes and option pricing," Papers 2112.08291, arXiv.org, revised Jul 2023.
    3. Peter Carr & Lorenzo Torricelli, 2024. "Convex duality in continuous option pricing models," Annals of Operations Research, Springer, vol. 336(1), pages 1013-1037, May.
    4. Roberto Baviera & Michele Domenico Massaria, 2025. "The Additive Bachelier model with an application to the oil option market in the Covid period," Papers 2506.09760, arXiv.org.
    5. Giuseppe Campolieti & Arash Fahim & Dan Pirjol & Harvey Stein & Tai-Ho Wang & Lingjiong Zhu, 2024. "In Memory of Peter Carr (1958–2022)," Risks, MDPI, vol. 12(2), pages 1-6, February.
    6. Jimin Lin & Guixin Liu, 2024. "Neural Term Structure of Additive Process for Option Pricing," Papers 2408.01642, arXiv.org, revised Oct 2024.
    7. Zheng Cao, 2024. "Stochastic Calculus for Option Pricing with Convex Duality, Logistic Model, and Numerical Examination," Papers 2408.05672, arXiv.org.
    8. Michele Azzone & Roberto Baviera, 2023. "A fast Monte Carlo scheme for additive processes and option pricing," Computational Management Science, Springer, vol. 20(1), pages 1-34, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Petkovic, 2009. "Three essays on exotic option pricing, multivariate Lévy processes and linear aggregation of panel models," ULB Institutional Repository 2013/210357, ULB -- Universite Libre de Bruxelles.
    2. Matthew Lorig & Oriol Lozano-Carbass'e, 2012. "Exponential L\'evy-type models with stochastic volatility and stochastic jump-intensity," Papers 1205.2398, arXiv.org, revised Jul 2013.
    3. Matthew Lorig & Oriol Lozano-Carbass�, 2015. "Multiscale exponential L�vy-type models," Quantitative Finance, Taylor & Francis Journals, vol. 15(1), pages 91-100, January.
    4. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    5. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    6. Akira Yamazaki, 2016. "Generalized Barndorff-Nielsen And Shephard Model And Discretely Monitored Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-34, June.
    7. Aldrich, Eric M. & Heckenbach, Indra & Laughlin, Gregory, 2016. "A compound duration model for high-frequency asset returns," Journal of Empirical Finance, Elsevier, vol. 39(PA), pages 105-128.
    8. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034, Decembrie.
    9. Sheri Markose & Amadeo Alentorn, 2005. "Option Pricing and the Implied Tail Index with the Generalized Extreme Value (GEV) Distribution," Computing in Economics and Finance 2005 397, Society for Computational Economics.
    10. Liuren Wu, 2006. "Dampened Power Law: Reconciling the Tail Behavior of Financial Security Returns," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1445-1474, May.
    11. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2021. "Arbitrage-free neural-SDE market models," Papers 2105.11053, arXiv.org, revised Aug 2021.
    12. Peter Carr & Liuren Wu, 2003. "The Finite Moment Log Stable Process and Option Pricing," Journal of Finance, American Finance Association, vol. 58(2), pages 753-777, April.
    13. Askari, Hossein & Krichene, Noureddine, 2008. "Oil price dynamics (2002-2006)," Energy Economics, Elsevier, vol. 30(5), pages 2134-2153, September.
    14. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    15. Anatoliy Swishchuk, 2013. "Modeling and Pricing of Swaps for Financial and Energy Markets with Stochastic Volatilities," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8660, February.
    16. Zura Kakushadze, 2016. "Volatility Smile as Relativistic Effect," Papers 1610.02456, arXiv.org, revised Feb 2017.
    17. Geman, Hélyette, 2005. "From measure changes to time changes in asset pricing," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2701-2722, November.
    18. Zaevski, Tsvetelin S. & Kim, Young Shin & Fabozzi, Frank J., 2014. "Option pricing under stochastic volatility and tempered stable Lévy jumps," International Review of Financial Analysis, Elsevier, vol. 31(C), pages 101-108.
    19. Jimin Lin & Guixin Liu, 2024. "Neural Term Structure of Additive Process for Option Pricing," Papers 2408.01642, arXiv.org, revised Oct 2024.
    20. Yoshio Miyahara & Alexander Novikov, 2001. "Geometric Lévy Process Pricing Model," Research Paper Series 66, Quantitative Finance Research Centre, University of Technology, Sydney.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:25:y:2021:i:4:d:10.1007_s00780-021-00461-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.