IDEAS home Printed from https://ideas.repec.org/p/siu/wpaper/22-2014.html
   My bibliography  Save this paper

On Bias in the Estimation of Structural Break Points

Author

Listed:
  • Liang Jiang

    (Singapore Management University)

  • Xiaohu Wang

    (The Chinese University of Hong Kong)

  • Jun Yu

    (Singapore Management University)

Abstract

Based on the Girsanov theorem, this paper obtains the exact finite sample distribution of the maximum likelihood estimator of structural break points in a continuous time model. The exact finite sample theory suggests that, in empirically realistic situations, there is a strong finite sample bias in the estimator of structural break points. This property is shared by least squares estimator of both the absolute structural break point and the fractional structural break point in discrete time models. A simulation-based method based on the indirect estimation approach is proposed to reduce the bias both in continuous time and discrete time models. Monte Carlo studies show that the indirect estimation method achieves substantial bias reductions. However, since the binding function has a slope less than one, the variance of the indirect estimator is larger than that of the original estimator.

Suggested Citation

  • Liang Jiang & Xiaohu Wang & Jun Yu, 2014. "On Bias in the Estimation of Structural Break Points," Working Papers 22-2014, Singapore Management University, School of Economics.
  • Handle: RePEc:siu:wpaper:22-2014
    as

    Download full text from publisher

    File URL: https://mercury.smu.edu.sg/rsrchpubupload/26370/22-2014.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jushan Bai, 1997. "Estimation Of A Change Point In Multiple Regression Models," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 551-563, November.
    2. Jushan Bai, 1994. "Least Squares Estimation Of A Shift In Linear Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(5), pages 453-472, September.
    3. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    4. Rilstone, Paul & Srivastava, V. K. & Ullah, Aman, 1996. "The second-order bias and mean squared error of nonlinear estimators," Journal of Econometrics, Elsevier, vol. 75(2), pages 369-395, December.
    5. Yu, Jun, 2012. "Bias in the estimation of the mean reversion parameter in continuous time models," Journal of Econometrics, Elsevier, vol. 169(1), pages 114-122.
    6. Smith, A A, Jr, 1993. "Estimating Nonlinear Time-Series Models Using Simulated Vector Autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 63-84, Suppl. De.
    7. Peter C. B. Phillips & Jun Yu, 2009. "Simulation-Based Estimation of Contingent-Claims Prices," The Review of Financial Studies, Society for Financial Studies, vol. 22(9), pages 3669-3705, September.
    8. Bao, Yong & Ullah, Aman, 2007. "The second-order bias and mean squared error of estimators in time-series models," Journal of Econometrics, Elsevier, vol. 140(2), pages 650-669, October.
    9. Peter C. B. Phillips, 2012. "Folklore Theorems, Implicit Maps, and Indirect Inference," Econometrica, Econometric Society, vol. 80(1), pages 425-454, January.
    10. Gallant, A. Ronald & Tauchen, George, 1996. "Which Moments to Match?," Econometric Theory, Cambridge University Press, vol. 12(4), pages 657-681, October.
    11. Bai, Jushan, 1995. "Least Absolute Deviation Estimation of a Shift," Econometric Theory, Cambridge University Press, vol. 11(3), pages 403-436, June.
    12. Arvanitis Stelios & Demos Antonis, 2018. "On the Validity of Edgeworth Expansions and Moment Approximations for Three Indirect Inference Estimators," Journal of Econometric Methods, De Gruyter, vol. 7(1), pages 1-38, January.
    13. MacKinnon, James G. & Smith Jr., Anthony A., 1998. "Approximate bias correction in econometrics," Journal of Econometrics, Elsevier, vol. 85(2), pages 205-230, August.
    14. Bai, Jushan, 1997. "Estimating Multiple Breaks One at a Time," Econometric Theory, Cambridge University Press, vol. 13(3), pages 315-352, June.
    15. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    16. Bhattacharya, P.K., 1987. "Maximum likelihood estimation of a change-point in the distribution of independent random variables: General multiparameter case," Journal of Multivariate Analysis, Elsevier, vol. 23(2), pages 183-208, December.
    17. Jushan Bai & Robin L. Lumsdaine & James H. Stock, 1998. "Testing For and Dating Common Breaks in Multivariate Time Series," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 395-432.
    18. Bai, Jushan, 2010. "Common breaks in means and variances for panel data," Journal of Econometrics, Elsevier, vol. 157(1), pages 78-92, July.
    19. Mariano,Roberto & Schuermann,Til & Weeks,Melvyn J. (ed.), 2000. "Simulation-based Inference in Econometrics," Cambridge Books, Cambridge University Press, number 9780521591126.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Liang & Wang, Xiaohu & Yu, Jun, 2018. "New distribution theory for the estimation of structural break point in mean," Journal of Econometrics, Elsevier, vol. 205(1), pages 156-176.
    2. Venkata Jandhyala & Stergios Fotopoulos & Ian MacNeill & Pengyu Liu, 2013. "Inference for single and multiple change-points in time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 423-446, July.
    3. Demos Antonis & Kyriakopoulou Dimitra, 2019. "Finite-Sample Theory and Bias Correction of Maximum Likelihood Estimators in the EGARCH Model," Journal of Time Series Econometrics, De Gruyter, vol. 11(1), pages 1-20, January.
    4. Oka, Tatsushi & Perron, Pierre, 2018. "Testing for common breaks in a multiple equations system," Journal of Econometrics, Elsevier, vol. 204(1), pages 66-85.
    5. Stelios Arvanitis & Antonis Demos, 2015. "A class of indirect inference estimators: higher‐order asymptotics and approximate bias correction," Econometrics Journal, Royal Economic Society, vol. 18(2), pages 200-241, June.
    6. Elliott, Graham & Muller, Ulrich K., 2007. "Confidence sets for the date of a single break in linear time series regressions," Journal of Econometrics, Elsevier, vol. 141(2), pages 1196-1218, December.
    7. Arvanitis Stelios & Demos Antonis, 2018. "On the Validity of Edgeworth Expansions and Moment Approximations for Three Indirect Inference Estimators," Journal of Econometric Methods, De Gruyter, vol. 7(1), pages 1-38, January.
    8. Bruce E. Hansen, 2001. "The New Econometrics of Structural Change: Dating Breaks in U.S. Labour Productivity," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 117-128, Fall.
    9. Kim, Tae-Hwan & Leybourne, Stephen & Newbold, Paul, 2002. "Unit root tests with a break in innovation variance," Journal of Econometrics, Elsevier, vol. 109(2), pages 365-387, August.
    10. Jouini, Jamel & Boutahar, Mohamed, 2005. "Evidence on structural changes in U.S. time series," Economic Modelling, Elsevier, vol. 22(3), pages 391-422, May.
    11. Yu, Jun, 2012. "Bias in the estimation of the mean reversion parameter in continuous time models," Journal of Econometrics, Elsevier, vol. 169(1), pages 114-122.
    12. Fiteni, Inmaculada, 2004. "[tau]-estimators of regression models with structural change of unknown location," Journal of Econometrics, Elsevier, vol. 119(1), pages 19-44, March.
    13. Baltagi, Badi H. & Feng, Qu & Kao, Chihwa, 2016. "Estimation of heterogeneous panels with structural breaks," Journal of Econometrics, Elsevier, vol. 191(1), pages 176-195.
    14. Seong Yeon Chang & Pierre Perron, 2016. "Inference on a Structural Break in Trend with Fractionally Integrated Errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(4), pages 555-574, July.
    15. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Boston University - Department of Economics - Working Papers Series WP2019-02, Boston University - Department of Economics.
    16. Yaein Baek, 2018. "Estimation of a Structural Break Point in Linear Regression Models," Papers 1811.03720, arXiv.org, revised Jun 2020.
    17. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    18. Benati, Luca, 2014. "Do TFP and the relative price of investment share a common I(1) component?," Journal of Economic Dynamics and Control, Elsevier, vol. 45(C), pages 239-261.
    19. De Wachter, Stefan & Tzavalis, Elias, 2012. "Detection of structural breaks in linear dynamic panel data models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3020-3034.
    20. Cheong, Siew Ann & Fornia, Robert Paulo & Lee, Gladys Hui Ting & Kok, Jun Liang & Yim, Woei Shyr & Xu, Danny Yuan & Zhang, Yiting, 2011. "The Japanese economy in crises: A time series segmentation study," Economics Discussion Papers 2011-24, Kiel Institute for the World Economy (IfW Kiel).

    More about this item

    Keywords

    Structural change; Bias reduction; Indirect estimation; Break point;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:siu:wpaper:22-2014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: QL THor (email available below). General contact details of provider: https://edirc.repec.org/data/sesmusg.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.