IDEAS home Printed from https://ideas.repec.org/p/cor/louvrp/2983.html

Finite-sample theory and bias correction of maximum likelihood estimators in the EGARCH model

Author

Listed:
  • Antonis Demos
  • Dimitra Kyriakopoulou

Abstract

We derive the analytical expressions of bias approximations for maximum likelihood (ML) and quasi-maximum likelihood (QML) estimators of the EGARCH (1,1) parameters that enable us to correct after the bias of all estimators. The bias-correction mechanism is constructed under the specification of two methods that are analytically described. We also evaluate the residual bootstrapped estimator as a measure of performance. Monte Carlo simulations indicate that, for given sets of parameters values, the bias corrections work satisfactory for all parameters. The proposed full-step estimator performs better than the classical one and is also faster than the bootstrap. The results can be also used to formulate the approximate Edgeworth distribution of the estimators.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Antonis Demos & Dimitra Kyriakopoulou, 2018. "Finite-sample theory and bias correction of maximum likelihood estimators in the EGARCH model," LIDAM Reprints CORE 2983, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvrp:2983
    DOI: https://doi.org/10.1515/jtse-2018-0010
    Note: In : Journal of Time Series Econometrics, 2018
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongdeng Xu, 2025. "The exponential HEAVY model: an improved approach to volatility modeling and forecasting," Review of Quantitative Finance and Accounting, Springer, vol. 65(2), pages 727-748, August.
    2. Stelios Arvanitis & Sofia Anyfantaki, 2020. "On the limit theory of the Gaussian SQMLE in the EGARCH(1,1) model," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 341-350, March.

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvrp:2983. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.