IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Maximum likelihood estimation of a change-point in the distribution of independent random variables: General multiparameter case

Listed author(s):
  • Bhattacharya, P.K.
Registered author(s):

    In a sequence ofn independent random variables the pdf changes fromf(x, 0) tof(x, 0 + [delta]vn-1) after the firstn[lambda] variables. The problem is to estimate[lambda] [set membership, variant] (0, 1 ), where 0 and [delta] are unknownd-dim parameters andvn --> [infinity] slower thann1/2. Letn denote the maximum likelihood estimator (mle) of[lambda]. Analyzing the local behavior of the likelihood function near the true parameter values it is shown under regularity conditions that ifnn2(- [lambda]) is bounded in probability asn --> [infinity], then it converges in law to the timeT([delta]j[delta])1/2 at which a two-sided Brownian motion (B.M.) with drift1/2([delta]'J[delta])1/2[short parallel]t[short parallel]on(-[infinity], [infinity]) attains its a.s. unique minimum, whereJ denotes the Fisher-information matrix. This generalizes the result for small change in mean of univariate normal random variables obtained by Bhattacharya and Brockwell (1976,Z. Warsch. Verw. Gebiete37, 51-75) who also derived the distribution ofT[mu] for[mu] > 0. For the general case an alternative estimator is constructed by a three-step procedure which is shown to have the above asymptotic distribution. In the important case of multiparameter exponential families, the construction of this estimator is considerably simplified.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 23 (1987)
    Issue (Month): 2 (December)
    Pages: 183-208

    in new window

    Handle: RePEc:eee:jmvana:v:23:y:1987:i:2:p:183-208
    Contact details of provider: Web page:

    Order Information: Postal:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:23:y:1987:i:2:p:183-208. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.