IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v20y2013i4p380-402.html
   My bibliography  Save this article

Local Volatility Pricing Models for Long-Dated FX Derivatives

Author

Listed:
  • Griselda Deelstra
  • Gr�gory Ray�e

Abstract

We study the local volatility function in the foreign exchange (FX) market, where both domestic and foreign interest rates are stochastic. This model is suitable to price long-dated FX derivatives. We derive the local volatility function and obtain several results that can be used for the calibration of this local volatility on the FX option's market. Then, we study an extension to obtain a more general volatility model and propose a calibration method for the local volatility associated with this model.

Suggested Citation

  • Griselda Deelstra & Gr�gory Ray�e, 2013. "Local Volatility Pricing Models for Long-Dated FX Derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 20(4), pages 380-402, September.
  • Handle: RePEc:taf:apmtfi:v:20:y:2013:i:4:p:380-402
    DOI: 10.1080/1350486X.2012.723516
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1350486X.2012.723516
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1350486X.2012.723516?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    2. Alexander van Haastrecht & Antoon Pelsser, 2011. "Generic pricing of FX, inflation and stock options under stochastic interest rates and stochastic volatility," Quantitative Finance, Taylor & Francis Journals, vol. 11(5), pages 665-691.
    3. Frédéric Bossens & Grégory Rayée & Nikos S. Skantzos & Griselda Deelstra, 2010. "Vanna-Volga Methods Applied To Fx Derivatives: From Theory To Market Practice," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(08), pages 1293-1324.
    4. Lech A. Grzelak & Cornelis W. Oosterlee, 2012. "On Cross-Currency Models with Stochastic Volatility and Correlated Interest Rates," Applied Mathematical Finance, Taylor & Francis Journals, vol. 19(1), pages 1-35, February.
    5. Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux, 2001. "Applications of Malliavin calculus to Monte-Carlo methods in finance. II," Finance and Stochastics, Springer, vol. 5(2), pages 201-236.
    6. Rehez Ahlip, 2008. "Foreign Exchange Options Under Stochastic Volatility And Stochastic Interest Rates," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(03), pages 277-294.
    7. Hull, John & White, Alan, 1993. "One-Factor Interest-Rate Models and the Valuation of Interest-Rate Derivative Securities," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(2), pages 235-254, June.
    8. Emanuel Derman & Iraj Kani, 1998. "Stochastic Implied Trees: Arbitrage Pricing with Stochastic Term and Strike Structure of Volatility," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 1(01), pages 61-110.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Recchioni, M.C. & Sun, Y., 2016. "An explicitly solvable Heston model with stochastic interest rate," European Journal of Operational Research, Elsevier, vol. 249(1), pages 359-377.
    2. Orcan Ogetbil & Narayan Ganesan & Bernhard Hientzsch, 2020. "Calibrating Local Volatility Models with Stochastic Drift and Diffusion," Papers 2009.14764, arXiv.org, revised May 2023.
    3. Simonella, Roberta & Vázquez, Carlos, 2023. "XVA in a multi-currency setting with stochastic foreign exchange rates," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 59-79.
    4. Maria Cristina Recchioni & Yu Sun & Gabriele Tedeschi, 2017. "Can negative interest rates really affect option pricing? Empirical evidence from an explicitly solvable stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 17(8), pages 1257-1275, August.
    5. Julien Hok & Shih-Hau Tan, 2019. "Calibration of local volatility model with stochastic interest rates by efficient numerical PDE methods," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 609-637, December.
    6. Emanuele Nastasi & Andrea Pallavicini & Giulio Sartorelli, 2020. "Smile Modeling In Commodity Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 23(03), pages 1-28, May.
    7. Deelstra, Griselda & Rayée, Grégory, 2013. "Pricing Variable Annuity Guarantees in a local volatility framework," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 650-663.
    8. Andrei Cozma & Matthieu Mariapragassam & Christoph Reisinger, 2015. "Convergence of an Euler scheme for a hybrid stochastic-local volatility model with stochastic rates in foreign exchange markets," Papers 1501.06084, arXiv.org, revised Oct 2016.
    9. Alessandro Gnoatto & Martino Grasselli, 2013. "An analytic multi-currency model with stochastic volatility and stochastic interest rates," Papers 1302.7246, arXiv.org, revised Mar 2013.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Gnoatto & Martino Grasselli, 2013. "An analytic multi-currency model with stochastic volatility and stochastic interest rates," Papers 1302.7246, arXiv.org, revised Mar 2013.
    2. Rehez Ahlip & Laurence A. F. Park & Ante Prodan, 2017. "Pricing currency options in the Heston/CIR double exponential jump-diffusion model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-30, March.
    3. Marcos Escobar & Christoph Gschnaidtner, 2018. "A multivariate stochastic volatility model with applications in the foreign exchange market," Review of Derivatives Research, Springer, vol. 21(1), pages 1-43, April.
    4. van Haastrecht, Alexander & Lord, Roger & Pelsser, Antoon & Schrager, David, 2009. "Pricing long-dated insurance contracts with stochastic interest rates and stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 436-448, December.
    5. Singor, Stefan N. & Grzelak, Lech A. & van Bragt, David D.B. & Oosterlee, Cornelis W., 2013. "Pricing inflation products with stochastic volatility and stochastic interest rates," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 286-299.
    6. Ravi Kashyap, 2022. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Annals of Operations Research, Springer, vol. 315(2), pages 1175-1215, August.
    7. Carol Alexandra & Leonardo M. Nogueira, 2005. "Optimal Hedging and Scale Inavriance: A Taxonomy of Option Pricing Models," ICMA Centre Discussion Papers in Finance icma-dp2005-10, Henley Business School, University of Reading, revised Nov 2005.
    8. Zura Kakushadze, 2016. "Volatility Smile as Relativistic Effect," Papers 1610.02456, arXiv.org, revised Feb 2017.
    9. Boris Ter-Avanesov & Homayoon Beigi, 2024. "MLP, XGBoost, KAN, TDNN, and LSTM-GRU Hybrid RNN with Attention for SPX and NDX European Call Option Pricing," Papers 2409.06724, arXiv.org, revised Oct 2024.
    10. Fazlollah Soleymani & Andrey Itkin, 2019. "Pricing foreign exchange options under stochastic volatility and interest rates using an RBF--FD method," Papers 1903.00937, arXiv.org.
    11. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    12. Recchioni, M.C. & Sun, Y., 2016. "An explicitly solvable Heston model with stochastic interest rate," European Journal of Operational Research, Elsevier, vol. 249(1), pages 359-377.
    13. van Haastrecht, Alexander & Plat, Richard & Pelsser, Antoon, 2010. "Valuation of guaranteed annuity options using a stochastic volatility model for equity prices," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 266-277, December.
    14. Kristensen, Dennis, 2008. "Estimation of partial differential equations with applications in finance," Journal of Econometrics, Elsevier, vol. 144(2), pages 392-408, June.
    15. Benjamin Cheng & Christina Nikitopoulos-Sklibosios & Erik Schlogl, 2015. "Pricing of Long-dated Commodity Derivatives with Stochastic Volatility and Stochastic Interest Rates," Research Paper Series 366, Quantitative Finance Research Centre, University of Technology, Sydney.
    16. João Pedro Vidal Nunes & Tiago Ramalho Viegas Alcaria, 2016. "Valuation of forward start options under affine jump-diffusion models," Quantitative Finance, Taylor & Francis Journals, vol. 16(5), pages 727-747, May.
    17. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    18. Carol Alexander & Leonardo Nogueira, 2007. "Model-free price hedge ratios for homogeneous claims on tradable assets," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 473-479.
    19. Roman Horsky & Tilman Sayer, 2015. "Joining The Heston And A Three-Factor Short Rate Model: A Closed-Form Approach," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(08), pages 1-17, December.
    20. Andrei Cozma & Matthieu Mariapragassam & Christoph Reisinger, 2015. "Convergence of an Euler scheme for a hybrid stochastic-local volatility model with stochastic rates in foreign exchange markets," Papers 1501.06084, arXiv.org, revised Oct 2016.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:20:y:2013:i:4:p:380-402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.