IDEAS home Printed from https://ideas.repec.org/p/rdg/icmadp/icma-dp2005-10.html
   My bibliography  Save this paper

Optimal Hedging and Scale Inavriance: A Taxonomy of Option Pricing Models

Author

Listed:
  • Carol Alexandra

    (ICMA Centre, University of Reading)

  • Leonardo M. Nogueira

    (ICMA Centre, University of Reading)

Abstract

The assumption that the probability distribution of returns is independent of the current level of the asset price is an intuitive property for option pricing models on financial assets. This 'scale invariance' feature is common to the Black-Scholes (1973) model, most stochastic volatility models and most jump-diffusion models. In this paper we extend the scale-invariant property to other models, including some local volatility, Lévy and mixture models, and derive a set of equivalence properties that are useful for classifying their hedging performance. Bates (2005) shows that, if calibrated exactly to the implied volatility smile, scale-invariant models have the same 'model-free' partial price sensitivities for vanilla options. We show that these model-free price hedge ratios are not optimal hedge ratios for many scale-invariant models. We derive optimal hedge ratios for stochastic and local volatility models that have not always been used in the literature. An empirical comparison of well-known models applied to SP 500 index options shows that optimal hedges are similar in all the smile-consistent models considered and they perform better than the Black-Scholes model on average. The partial price sensitivities of scale-invariant models provide the poorest hedges.

Suggested Citation

  • Carol Alexandra & Leonardo M. Nogueira, 2005. "Optimal Hedging and Scale Inavriance: A Taxonomy of Option Pricing Models," ICMA Centre Discussion Papers in Finance icma-dp2005-10, Henley Business School, University of Reading, revised Nov 2005.
  • Handle: RePEc:rdg:icmadp:icma-dp2005-10
    as

    Download full text from publisher

    File URL: http://www.icmacentre.ac.uk/pdf/discussion/DP2005-10.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. George Skiadopoulos, 2001. "Volatility Smile Consistent Option Models: A Survey," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(03), pages 403-437.
    2. Bates, David S., 2005. "Hedging the smirk," Finance Research Letters, Elsevier, vol. 2(4), pages 195-200, December.
    3. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    4. Damiano Brigo & Fabio Mercurio, 2002. "Lognormal-Mixture Dynamics And Calibration To Market Volatility Smiles," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 427-446.
    5. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    6. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    7. Gurdip Bakshi & Nikunj Kapadia, 2003. "Delta-Hedged Gains and the Negative Market Volatility Risk Premium," Review of Financial Studies, Society for Financial Studies, vol. 16(2), pages 527-566.
    8. Naik, Vasanttilak, 1993. "Option Valuation and Hedging Strategies with Jumps in the Volatility of Asset Returns," Journal of Finance, American Finance Association, vol. 48(5), pages 1969-1984, December.
    9. Takaki Hayashi & Per A. Mykland, 2005. "Evaluating Hedging Errors: An Asymptotic Approach," Mathematical Finance, Wiley Blackwell, vol. 15(2), pages 309-343, April.
    10. Peter Carr & Katrina Ellis & Vishal Gupta, 1998. "Static Hedging of Exotic Options," Journal of Finance, American Finance Association, vol. 53(3), pages 1165-1190, June.
    11. Schroder, Mark Douglas, 1989. " Computing the Constant Elasticity of Variance Option Pricing Formula," Journal of Finance, American Finance Association, vol. 44(1), pages 211-219, March.
    12. Jiri Hoogland & Dimitri Neumann, 1999. "Scale invariance and contingent claim pricing," Finance 9907002, University Library of Munich, Germany.
    13. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    14. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    15. Bernard Dumas & Jeff Fleming & Robert E. Whaley, 1998. "Implied Volatility Functions: Empirical Tests," Journal of Finance, American Finance Association, vol. 53(6), pages 2059-2106, December.
    16. Rubinstein, Mark, 1994. "Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    17. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    18. J. K. Hoogland & C. D. D. Neumann, 2001. "Local Scale Invariance And Contingent Claim Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-21.
    19. Emanuel Derman & Iraj Kani, 1998. "Stochastic Implied Trees: Arbitrage Pricing with Stochastic Term and Strike Structure of Volatility," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 1(01), pages 61-110.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander, Carol & Nogueira, Leonardo M., 2007. "Model-free hedge ratios and scale-invariant models," Journal of Banking & Finance, Elsevier, vol. 31(6), pages 1839-1861, June.
    2. Carol Alexander & Leonardo Nogueira, 2007. "Model-free price hedge ratios for homogeneous claims on tradable assets," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 473-479.
    3. Carol Alexander & Leonardo M. Nogueira, 2006. "Hedging Options with Scale-Invariant Models," ICMA Centre Discussion Papers in Finance icma-dp2006-03, Henley Business School, University of Reading.
    4. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    5. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    6. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    7. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    8. Carol Alexander & Andreas Kaeck, 2012. "Does model fit matter for hedging? Evidence from FTSE 100 options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 32(7), pages 609-638, July.
    9. Ramazan Gencay & Aslihan Salih, 2003. "Degree of Mispricing with the Black-Scholes Model and Nonparametric Cures," Annals of Economics and Finance, Society for AEF, vol. 4(1), pages 73-101, May.
    10. Ke Nian & Thomas F. Coleman & Yuying Li, 2018. "Learning minimum variance discrete hedging directly from the market," Quantitative Finance, Taylor & Francis Journals, vol. 18(7), pages 1115-1128, July.
    11. Don M. Chance & Thomas A. Hanson & Weiping Li & Jayaram Muthuswamy, 2017. "A bias in the volatility smile," Review of Derivatives Research, Springer, vol. 20(1), pages 47-90, April.
    12. Timothy Sharp & Steven Li & David Allen, 2010. "Empirical performance of affine option pricing models: evidence from the Australian index options market," Applied Financial Economics, Taylor & Francis Journals, vol. 20(6), pages 501-514.
    13. Tao Li, 2013. "Investors' Heterogeneity and Implied Volatility Smiles," Management Science, INFORMS, vol. 59(10), pages 2392-2412, October.
    14. Chen, Song Xi & Xu, Zheng, 2014. "On implied volatility for options—Some reasons to smile and more to correct," Journal of Econometrics, Elsevier, vol. 179(1), pages 1-15.
    15. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
    16. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    17. Guidolin, Massimo & Timmermann, Allan, 2003. "Option prices under Bayesian learning: implied volatility dynamics and predictive densities," Journal of Economic Dynamics and Control, Elsevier, vol. 27(5), pages 717-769, March.
    18. Jondeau, Eric & Rockinger, Michael, 2000. "Reading the smile: the message conveyed by methods which infer risk neutral densities," Journal of International Money and Finance, Elsevier, vol. 19(6), pages 885-915, December.
    19. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    20. He, Xin-Jiang & Zhu, Song-Ping, 2017. "How should a local regime-switching model be calibrated?," Journal of Economic Dynamics and Control, Elsevier, vol. 78(C), pages 149-163.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rdg:icmadp:icma-dp2005-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marie Pearson (email available below). General contact details of provider: https://edirc.repec.org/data/bsrdguk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.