IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Scale invariance and contingent claim pricing

Listed author(s):
  • Jiri Hoogland

    (CWI, Amsterdam)

  • Dimitri Neumann

    (CWI, Amsterdam)

Prices of tradables can only be expressed relative to each other at any instant of time. This fundamental fact should therefore also hold for contingent claims, i.e. tradable instruments, whose prices depend on the prices of other tradables. We show that this property induces a local scaling invariance in the problem of pricing contingent claims. Due to this symmetry we do {\it not\/} require any martingale techniques to arrive at the price of a claim. If the tradables are driven by Brownian motion, we find, in a natural way, that this price satisfies a PDE. Both possess a manifest gauge-invariance. A unique solution can only be given when we impose restrictions on the drifts and volatilities of the tradables, i.e. the underlying market structure. We give some examples of the application of this PDE to the pricing of claims. In the Black- Scholes world we show the equivalence of our formulation with the standard approach. It is stressed that the formulation in terms of tradables leads to a significant conceptual simplification of the pricing-problem.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by EconWPA in its series Finance with number 9907002.

in new window

Length: 17 pages
Date of creation: 16 Jul 1999
Handle: RePEc:wpa:wuwpfi:9907002
Note: Type of Document - PDF; prepared on NT/Latex; to print on PDF printer; pages: 17 . See also for postscript version version
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
  2. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305 World Scientific Publishing Co. Pte. Ltd..
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpfi:9907002. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.