IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Scale invariance and contingent claim pricing II: Path-dependent contingent claims

  • Jiri Hoogland

    (CWI, Amsterdam)

  • Dimitri Neumann

    (CWI, Amsterdam)

This article is the second one in a series on the use of scaling invariance in finance. In the first paper, we introduced a new formalism for the pricing of derivative securities, which focusses on tradable objects only, and which completely avoids the use of martingale techniques. In this article we show the use of the formalism in the context of path-dependent options. We derive compact and intuitive formulae for the prices of a whole range of well known options such as arithmetic and geometric average options, barriers, rebates and lookback options. Some of these have not appeared in the literature before. For example, we find rather elegant formulae for double barrier options with moving barriers, continuous dividends and all possible configurations of the barriers. The strength of the formalism reveals itself in the ease with which these prices can be derived. This allowed us to pinpoint some mistakes regarding geometric mean options, which frequently appear in the literature. Furthermore, symmetries such as put-call transformations appear in a natural way within the framework.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://128.118.178.162/eps/fin/papers/9907/9907003.pdf
Download Restriction: no

Paper provided by EconWPA in its series Finance with number 9907003.

as
in new window

Length: 20 pages
Date of creation: 16 Jul 1999
Date of revision:
Handle: RePEc:wpa:wuwpfi:9907003
Note: Type of Document - PDF; prepared on NT/Latex; to print on PDF printer; pages: 20 . See also http://www.cwi.nl/~jiri for postscript version
Contact details of provider: Web page: http://128.118.178.162

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Kemna, A. G. Z. & Vorst, A. C. F., 1990. "A pricing method for options based on average asset values," Journal of Banking & Finance, Elsevier, vol. 14(1), pages 113-129, March.
  2. Jiri Hoogland & Dimitri Neumann, 1999. "Scale invariance and contingent claim pricing," Finance 9907002, EconWPA.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpfi:9907003. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.