IDEAS home Printed from https://ideas.repec.org/a/kap/revdev/v28y2025i1d10.1007_s11147-025-09211-w.html
   My bibliography  Save this article

Pricing of geometric Asian options in the Volterra-Heston model

Author

Listed:
  • Florian Aichinger

    (Johannes Kepler University of Linz
    Austrian Academy of Sciences)

  • Sascha Desmettre

    (Johannes Kepler University of Linz)

Abstract

Geometric Asian options are a type of option where the payoff depends on the geometric mean of the underlying asset over a certain period of time. This paper is concerned with the pricing of such options for the class of Volterra-Heston models, covering the rough Heston model. We are able to derive semi-closed formulas for the prices of geometric Asian options with fixed and floating strikes for this class of stochastic volatility models. These formulas require the explicit calculation of the conditional joint Fourier transform of the logarithm of the stock price and the logarithm of the geometric mean of the stock price over time. Linking our problem to the theory of affine Volterra processes, we find a representation of this Fourier transform as a suitably constructed stochastic exponential, which depends on the solution of a Riccati-Volterra equation. Finally, we provide a numerical study for our results in the rough Heston model.

Suggested Citation

  • Florian Aichinger & Sascha Desmettre, 2025. "Pricing of geometric Asian options in the Volterra-Heston model," Review of Derivatives Research, Springer, vol. 28(1), pages 1-30, April.
  • Handle: RePEc:kap:revdev:v:28:y:2025:i:1:d:10.1007_s11147-025-09211-w
    DOI: 10.1007/s11147-025-09211-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11147-025-09211-w
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11147-025-09211-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mikkel Bennedsen & Asger Lunde & Mikko S Pakkanen, 2022. "Decoupling the Short- and Long-Term Behavior of Stochastic Volatility [Multifactor Approximation of Rough Volatility Models]," Journal of Financial Econometrics, Oxford University Press, vol. 20(5), pages 961-1006.
    2. Abi Jaber, Eduardo & El Euch, Omar, 2019. "Markovian structure of the Volterra Heston model," Statistics & Probability Letters, Elsevier, vol. 149(C), pages 63-72.
    3. Eduardo Abi Jaber & Enzo Miller & Huy^en Pham, 2020. "Markowitz portfolio selection for multivariate affine and quadratic Volterra models," Papers 2006.13539, arXiv.org, revised Jan 2021.
    4. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    5. Eduardo Abi Jaber & Enzo Miller & Huyên Pham, 2021. "Markowitz portfolio selection for multivariate affine and quadratic Volterra models," Post-Print hal-02877569, HAL.
    6. Ballestra, Luca Vincenzo & Pacelli, Graziella & Zirilli, Francesco, 2007. "A numerical method to price exotic path-dependent options on an underlying described by the Heston stochastic volatility model," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3420-3437, November.
    7. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    8. Jim Gatheral & Martin Keller-Ressel, 2019. "Affine forward variance models," Finance and Stochastics, Springer, vol. 23(3), pages 501-533, July.
    9. Hélyette Geman & Marc Yor, 1993. "Bessel Processes, Asian Options, And Perpetuities," Mathematical Finance, Wiley Blackwell, vol. 3(4), pages 349-375, October.
    10. Kemna, A. G. Z. & Vorst, A. C. F., 1990. "A pricing method for options based on average asset values," Journal of Banking & Finance, Elsevier, vol. 14(1), pages 113-129, March.
    11. Masaaki Fukasawa & Tetsuya Takabatake & Rebecca Westphal, 2022. "Consistent estimation for fractional stochastic volatility model under high‐frequency asymptotics," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 1086-1132, October.
    12. Bakshi, Gurdip & Madan, Dilip, 2000. "Spanning and derivative-security valuation," Journal of Financial Economics, Elsevier, vol. 55(2), pages 205-238, February.
    13. Sascha Desmettre & Jörg Wenzel, 2021. "On the Valuation of Discrete Asian Options in High Volatility Environments," Applied Mathematical Finance, Taylor & Francis Journals, vol. 28(6), pages 508-533, November.
    14. Omar Euch & Masaaki Fukasawa & Mathieu Rosenbaum, 2018. "The microstructural foundations of leverage effect and rough volatility," Finance and Stochastics, Springer, vol. 22(2), pages 241-280, April.
    15. Etienne Chevalier & Sergio Pulido & Elizabeth Z'u~niga, 2021. "American options in the Volterra Heston model," Papers 2103.11734, arXiv.org, revised May 2022.
    16. Peter K. Friz & Thomas Wagenhofer, 2023. "Reconstructing volatility: Pricing of index options under rough volatility," Mathematical Finance, Wiley Blackwell, vol. 33(1), pages 19-40, January.
    17. Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2022. "American options in the Volterra Heston model," Post-Print hal-03178306, HAL.
    18. Mark Broadie & Özgür Kaya, 2006. "Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes," Operations Research, INFORMS, vol. 54(2), pages 217-231, April.
    19. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    20. Omar El Euch & Mathieu Rosenbaum, 2019. "The characteristic function of rough Heston models," Mathematical Finance, Wiley Blackwell, vol. 29(1), pages 3-38, January.
    21. Bara Kim & In-Suk Wee, 2014. "Pricing of geometric Asian options under Heston's stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1795-1809, October.
    22. F. Comte & L. Coutin & E. Renault, 2012. "Affine fractional stochastic volatility models," Annals of Finance, Springer, vol. 8(2), pages 337-378, May.
    23. J. Lars Kirkby & Duy Nguyen, 2020. "Efficient Asian option pricing under regime switching jump diffusions and stochastic volatility models," Annals of Finance, Springer, vol. 16(3), pages 307-351, September.
    24. Min-Ku Lee & Jeong-Hoon Kim & Kyu-Hwan Jang, 2014. "Pricing Arithmetic Asian Options under Hybrid Stochastic and Local Volatility," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-8, January.
    25. Min-Ku Lee & Jeong-Hoon Kim & Kyu-Hwan Jang, 2014. "Pricing Arithmetic Asian Options under Hybrid Stochastic and Local Volatility," Journal of Applied Mathematics, John Wiley & Sons, vol. 2014(1).
    26. Eduardo Abi Jaber & Enzo Miller & Huyên Pham, 2021. "Markowitz portfolio selection for multivariate affine and quadratic Volterra models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02877569, HAL.
    27. C. Bayer & P. K. Friz & A. Gulisashvili & B. Horvath & B. Stemper, 2019. "Short-time near-the-money skew in rough fractional volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 19(5), pages 779-798, May.
    28. Eduardo Abi Jaber & Omar El Euch, 2019. "Markovian structure of the Volterra Heston model," Post-Print hal-01716696, HAL.
    29. Paul Glasserman & Pu He, 2020. "Buy rough, sell smooth," Quantitative Finance, Taylor & Francis Journals, vol. 20(3), pages 363-378, March.
    30. Rama Cont & Purba Das, 2024. "Rough Volatility: Fact or Artefact?," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(1), pages 191-223, May.
    31. Christian Bayer & Peter Friz & Jim Gatheral, 2016. "Pricing under rough volatility," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 887-904, June.
    32. Sascha Desmettre & Gunther Leobacher & L. C. G. Rogers, 2021. "Change of drift in one-dimensional diffusions," Finance and Stochastics, Springer, vol. 25(2), pages 359-381, April.
    33. Boyle, Phelim & Potapchik, Alexander, 2008. "Prices and sensitivities of Asian options: A survey," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 189-211, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    2. Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2021. "American options in the Volterra Heston model," Working Papers hal-03178306, HAL.
    3. Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2022. "American options in the Volterra Heston model," Post-Print hal-03178306, HAL.
    4. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Post-Print hal-02946146, HAL.
    5. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    6. Huy N. Chau & Duy Nguyen & Thai Nguyen, 2024. "On short-time behavior of implied volatility in a market model with indexes," Papers 2402.16509, arXiv.org, revised Mar 2025.
    7. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Papers 2210.12393, arXiv.org.
    8. repec:hal:wpaper:hal-03827332 is not listed on IDEAS
    9. Etienne Chevalier & Sergio Pulido & Elizabeth Z'u~niga, 2021. "American options in the Volterra Heston model," Papers 2103.11734, arXiv.org, revised May 2022.
    10. Florian Aichinger & Sascha Desmettre, 2024. "Pricing of geometric Asian options in the Volterra-Heston model," Papers 2402.15828, arXiv.org, revised Jan 2025.
    11. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2024. "The rough Hawkes Heston stochastic volatility model," Post-Print hal-03827332, HAL.
    12. Jingtang Ma & Wensheng Yang & Zhenyu Cui, 2021. "Semimartingale and continuous-time Markov chain approximation for rough stochastic local volatility models," Papers 2110.08320, arXiv.org, revised Oct 2021.
    13. Antoine Jacquier & Emma R. Malone & Mugad Oumgari, 2019. "Stacked Monte Carlo for option pricing," Papers 1903.10795, arXiv.org.
    14. Eduardo Abi Jaber, 2020. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Papers 2009.10972, arXiv.org, revised May 2022.
    15. Jacquier, Antoine & Pannier, Alexandre, 2022. "Large and moderate deviations for stochastic Volterra systems," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 142-187.
    16. Ackermann, Julia & Kruse, Thomas & Overbeck, Ludger, 2022. "Inhomogeneous affine Volterra processes," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 250-279.
    17. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02946146, HAL.
    18. Martin Friesen & Stefan Gerhold & Kristof Wiedermann, 2024. "Small-time central limit theorems for stochastic Volterra integral equations and their Markovian lifts," Papers 2412.15971, arXiv.org.
    19. Bara Kim & In-Suk Wee, 2014. "Pricing of geometric Asian options under Heston's stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1795-1809, October.
    20. Florian Bourgey & Stefano De Marco & Peter K. Friz & Paolo Pigato, 2023. "Local volatility under rough volatility," Mathematical Finance, Wiley Blackwell, vol. 33(4), pages 1119-1145, October.
    21. Bolko, Anine E. & Christensen, Kim & Pakkanen, Mikko S. & Veliyev, Bezirgen, 2023. "A GMM approach to estimate the roughness of stochastic volatility," Journal of Econometrics, Elsevier, vol. 235(2), pages 745-778.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:revdev:v:28:y:2025:i:1:d:10.1007_s11147-025-09211-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.