IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v15y2015i8p1425-1436.html
   My bibliography  Save this article

High-performance financial simulation using randomized quasi-Monte Carlo methods

Author

Listed:
  • Linlin Xu
  • Giray Ökten

Abstract

Graphics Processing Unit (GPU) computing has become popular in computational finance, and many financial institutions are moving their CPU-based applications to the GPU platform. Since most Monte Carlo algorithms are embarrassingly parallel, they benefit greatly from parallel implementations, and consequently Monte Carlo has become a focal point in GPU computing. GPU speed-up examples reported in the literature often involve Monte Carlo algorithms, and there are software tools commercially available that help migrate Monte Carlo financial pricing models to GPU. We present a survey of Monte Carlo and randomized quasi-Monte Carlo methods, and discuss existing (quasi) Monte Carlo sequences in GPU libraries. We discuss specific features of GPU architecture relevant for developing efficient (quasi) Monte Carlo methods. We introduce a recent randomized quasi-Monte Carlo method, and compare it with some of the existing implementations on GPU, when they are used in pricing caplets in the LIBOR market model and mortgage-backed securities.

Suggested Citation

  • Linlin Xu & Giray Ökten, 2015. "High-performance financial simulation using randomized quasi-Monte Carlo methods," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1425-1436, August.
  • Handle: RePEc:taf:quantf:v:15:y:2015:i:8:p:1425-1436
    DOI: 10.1080/14697688.2015.1032549
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2015.1032549
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2015.1032549?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    2. Okten, Giray & Eastman, Warren, 2004. "Randomized quasi-Monte Carlo methods in pricing securities," Journal of Economic Dynamics and Control, Elsevier, vol. 28(12), pages 2399-2426, December.
    3. Marek Rutkowski & Marek Musiela, 1997. "Continuous-time term structure models: Forward measure approach (*)," Finance and Stochastics, Springer, vol. 1(4), pages 261-291.
    4. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    5. Miltersen, Kristian R & Sandmann, Klaus & Sondermann, Dieter, 1997. "Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," Journal of Finance, American Finance Association, vol. 52(1), pages 409-430, March.
    6. Alan Brace & Dariusz G¸atarek & Marek Musiela, 1997. "The Market Model of Interest Rate Dynamics," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 127-155, April.
    7. Schmid, Wolfgang Ch. & Uhl, Andreas, 2001. "Techniques for parallel quasi-Monte Carlo integration with digital sequences and associated problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 55(1), pages 249-257.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ökten, Giray & Liu, Yaning, 2021. "Randomized quasi-Monte Carlo methods in global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    2. Yu-Ying Tzeng & Paul M. Beaumont & Giray Ökten, 2018. "Time Series Simulation with Randomized Quasi-Monte Carlo Methods: An Application to Value at Risk and Expected Shortfall," Computational Economics, Springer;Society for Computational Economics, vol. 52(1), pages 55-77, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaka Gogala & Joanne E. Kennedy, 2017. "CLASSIFICATION OF TWO- AND THREE-FACTOR TIME-HOMOGENEOUS SEPARABLE LMMs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 1-44, March.
    2. Jui‐Jane Chang & Son‐Nan Chen & Ting‐Pin Wu, 2013. "Currency‐Protected Swaps and Swaptions with Nonzero Spreads in a Multicurrency LMM," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(9), pages 827-867, September.
    3. Marek Musiela, 2022. "My journey through finance and stochastics," Finance and Stochastics, Springer, vol. 26(1), pages 33-58, January.
    4. Heidari, Massoud & Wu, Liuren, 2009. "A Joint Framework for Consistently Pricing Interest Rates and Interest Rate Derivatives," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 44(3), pages 517-550, June.
    5. K. F. Pilz & E. Schlögl, 2013. "A hybrid commodity and interest rate market model," Quantitative Finance, Taylor & Francis Journals, vol. 13(4), pages 543-560, March.
    6. Marek Rutkowski & Matthew Bickersteth, 2021. "Pricing and Hedging of SOFR Derivatives under Differential Funding Costs and Collateralization," Papers 2112.14033, arXiv.org.
    7. Glasserman, P. & Zhao, X., 1998. "Arbitrage-Free Discretization of Lognormal Forward Libor and Swap Rate Models," Papers 98-09, Columbia - Graduate School of Business.
    8. Massoud Heidari & Liuren Wu, 2002. "Term Structure of Interest Rates, Yield Curve Residuals, and the Consistent Pricing of Interest Rates and Interest Rate Derivatives," Finance 0207010, University Library of Munich, Germany, revised 10 Sep 2002.
    9. Takashi Yasuoka, 2001. "Mathematical Pseudo-Completion Of The Bgm Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(03), pages 375-401.
    10. Nicolas Merener & Paul Glasserman, 2003. "Numerical solution of jump-diffusion LIBOR market models," Finance and Stochastics, Springer, vol. 7(1), pages 1-27.
    11. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    12. Frank De Jong & Joost Driessen & Antoon Pelsser, 2001. "Libor Market Models versus Swap Market Models for Pricing Interest Rate Derivatives: An Empirical Analysis," Review of Finance, European Finance Association, vol. 5(3), pages 201-237.
    13. Zhanyu Chen & Kai Zhang & Hongbiao Zhao, 2022. "A Skellam market model for loan prime rate options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(3), pages 525-551, March.
    14. Dai, Qiang & Singleton, Kenneth J., 2003. "Fixed-income pricing," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 20, pages 1207-1246, Elsevier.
    15. Raoul Pietersz & Marcel Regenmortel, 2006. "Generic market models," Finance and Stochastics, Springer, vol. 10(4), pages 507-528, December.
      • Pietersz, R. & van Regenmortel, M., 2005. "Generic Market Models," ERIM Report Series Research in Management ERS-2005-010-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
      • Raoul Pietersz & Marcel van Regenmortel, 2005. "Generic Market Models," Finance 0502009, University Library of Munich, Germany.
    16. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    17. Yongwoong Lee & Kisung Yang, 2020. "Finite Difference Method for the Hull–White Partial Differential Equations," Mathematics, MDPI, vol. 8(10), pages 1-11, October.
    18. Matthias Muck, 2012. "Spread ladder swaps—an analysis of controversial interest rate derivatives," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 26(2), pages 269-289, June.
    19. Ernst Eberlein & Wolfgang Kluge & Antonis Papapantoleon, 2006. "Symmetries In Lévy Term Structure Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 9(06), pages 967-986.
    20. Erik Schlögl, 2002. "Extracting the Joint Volatility Structure of Foreign Exchange and Interest Rates from Option Prices," Research Paper Series 79, Quantitative Finance Research Centre, University of Technology, Sydney.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:15:y:2015:i:8:p:1425-1436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.