IDEAS home Printed from https://ideas.repec.org/a/cup/jfinqa/v44y2009i03p517-550_99.html
   My bibliography  Save this article

A Joint Framework for Consistently Pricing Interest Rates and Interest Rate Derivatives

Author

Listed:
  • Heidari, Massoud
  • Wu, Liuren

Abstract

Dynamic term structure models explain the yield curve variation well but perform poorly in pricing and hedging interest rate options. Most existing option pricing practices take the yield curve as given, thus having little to say about the fair valuation of the underlying interest rates. This paper proposes an m + n model structure that bridges the gap in the literature by successfully pricing both interest rates and interest rate options. The first m factors capture the yield curve variation, whereas the latter n factors capture the interest rate options movements that cannot be effectively identified from the yield curve. We propose a sequential estimation procedure that identifies the m yield curve factors from the LIBOR and swap rates in the first step and the n options factors from interest rate caps in the second step. The three yield curve factors explain over 99% of the variation in the yield curve but account for less than 50% of the implied volatility variation for the caps. Incorporating three additional options factors improves the explained variation in implied volatilities to over 99%.

Suggested Citation

  • Heidari, Massoud & Wu, Liuren, 2009. "A Joint Framework for Consistently Pricing Interest Rates and Interest Rate Derivatives," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 44(03), pages 517-550, June.
  • Handle: RePEc:cup:jfinqa:v:44:y:2009:i:03:p:517-550_99
    as

    Download full text from publisher

    File URL: http://journals.cambridge.org/abstract_S0022109009990093
    File Function: link to article abstract page
    Download Restriction: no

    References listed on IDEAS

    as
    1. Duffie, Darrell & Singleton, Kenneth J, 1997. " An Econometric Model of the Term Structure of Interest-Rate Swap Yields," Journal of Finance, American Finance Association, vol. 52(4), pages 1287-1321, September.
    2. Alan Brace & Dariusz G¬łatarek & Marek Musiela, 1997. "The Market Model of Interest Rate Dynamics," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 127-155.
    3. Qiang Dai & Kenneth J. Singleton, 2000. "Specification Analysis of Affine Term Structure Models," Journal of Finance, American Finance Association, vol. 55(5), pages 1943-1978, October.
    4. Pierre Collin-Dufresne & Robert S. Goldstein, 2002. "Do Bonds Span the Fixed Income Markets? Theory and Evidence for Unspanned Stochastic Volatility," Journal of Finance, American Finance Association, vol. 57(4), pages 1685-1730, August.
    5. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305 World Scientific Publishing Co. Pte. Ltd..
    6. Goldstein, Robert S, 2000. "The Term Structure of Interest Rates as a Random Field," Review of Financial Studies, Society for Financial Studies, vol. 13(2), pages 365-384.
    7. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    8. Pennacchi, George G, 1991. "Identifying the Dynamics of Real Interest Rates and Inflation: Evidence Using Survey Data," Review of Financial Studies, Society for Financial Studies, vol. 4(1), pages 53-86.
    9. Miltersen, Kristian R & Sandmann, Klaus & Sondermann, Dieter, 1997. " Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," Journal of Finance, American Finance Association, vol. 52(1), pages 409-430, March.
    10. Leippold, Markus & Wu, Liuren, 2002. "Asset Pricing under the Quadratic Class," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 37(02), pages 271-295, June.
    11. Pearson, Neil D & Sun, Tong-Sheng, 1994. " Exploiting the Conditional Density in Estimating the Term Structure: An Application to the Cox, Ingersoll, and Ross Model," Journal of Finance, American Finance Association, vol. 49(4), pages 1279-1304, September.
    12. Duffee, Gregory R, 1999. "Estimating the Price of Default Risk," Review of Financial Studies, Society for Financial Studies, vol. 12(1), pages 197-226.
    13. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    14. Santa-Clara, Pedro & Sornette, Didier, 2001. "The Dynamics of the Forward Interest Rate Curve with Stochastic String Shocks," Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 149-185.
    15. Marek Rutkowski & Marek Musiela, 1997. "Continuous-time term structure models: Forward measure approach (*)," Finance and Stochastics, Springer, vol. 1(4), pages 261-291.
    16. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    17. Gregory R. Duffee, 2002. "Term Premia and Interest Rate Forecasts in Affine Models," Journal of Finance, American Finance Association, vol. 57(1), pages 405-443, February.
    18. Darrell Duffie & Rui Kan, 1996. "A Yield-Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406.
    19. Haitao Li & Feng Zhao, 2006. "Unspanned Stochastic Volatility: Evidence from Hedging Interest Rate Derivatives," Journal of Finance, American Finance Association, vol. 61(1), pages 341-378, February.
    20. Longstaff, Francis A & Schwartz, Eduardo S, 1992. " Interest Rate Volatility and the Term Structure: A Two-Factor General Equilibrium Model," Journal of Finance, American Finance Association, vol. 47(4), pages 1259-1282, September.
    21. Ho, Thomas S Y & Lee, Sang-bin, 1986. " Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-1029, December.
    22. Knez, Peter J & Litterman, Robert & Scheinkman, Jose Alexandre, 1994. " Explorations into Factors Explaining Money Market Returns," Journal of Finance, American Finance Association, vol. 49(5), pages 1861-1882, December.
    23. Ruslan Bikbov & Mikhail Chernov, 2009. "Unspanned Stochastic Volatility in Affine Models: Evidence from Eurodollar Futures and Options," Management Science, INFORMS, vol. 55(8), pages 1292-1305, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hideyuki Takamizawa, 2015. "Predicting Interest Rate Volatility Using Information on the Yield Curve," International Review of Finance, International Review of Finance Ltd., vol. 15(3), pages 347-386, September.
    2. Guimar√£es, Rodrigo, 2014. "Expectations, risk premia and information spanning in dynamic term structure model estimation," Bank of England working papers 489, Bank of England.
    3. Ye, Xiaoxia, 2012. "Market expectations of the short rate and the term structure of interest rates: a new perspective from the classic model," MPRA Paper 41093, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:jfinqa:v:44:y:2009:i:03:p:517-550_99. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters). General contact details of provider: http://journals.cambridge.org/jid_JFQ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.