IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

A Joint Framework for Consistently Pricing Interest Rates and Interest Rate Derivatives

  • Heidari, Massoud
  • Wu, Liuren

Dynamic term structure models explain the yield curve variation well but perform poorly in pricing and hedging interest rate options. Most existing option pricing practices take the yield curve as given, thus having little to say about the fair valuation of the underlying interest rates. This paper proposes an m + n model structure that bridges the gap in the literature by successfully pricing both interest rates and interest rate options. The first m factors capture the yield curve variation, whereas the latter n factors capture the interest rate options movements that cannot be effectively identified from the yield curve. We propose a sequential estimation procedure that identifies the m yield curve factors from the LIBOR and swap rates in the first step and the n options factors from interest rate caps in the second step. The three yield curve factors explain over 99% of the variation in the yield curve but account for less than 50% of the implied volatility variation for the caps. Incorporating three additional options factors improves the explained variation in implied volatilities to over 99%.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://journals.cambridge.org/abstract_S0022109009990093
File Function: link to article abstract page
Download Restriction: no

Article provided by Cambridge University Press in its journal Journal of Financial and Quantitative Analysis.

Volume (Year): 44 (2009)
Issue (Month): 03 (June)
Pages: 517-550

as
in new window

Handle: RePEc:cup:jfinqa:v:44:y:2009:i:03:p:517-550_99
Contact details of provider: Postal:
Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK

Web page: http://journals.cambridge.org/jid_JFQ
Email:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Gregory R. Duffee, 1996. "Estimating the price of default risk," Finance and Economics Discussion Series 96-29, Board of Governors of the Federal Reserve System (U.S.).
  2. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
  3. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305 World Scientific Publishing Co. Pte. Ltd..
  4. Ho, Thomas S Y & Lee, Sang-bin, 1986. " Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-29, December.
  5. Pearson, Neil D & Sun, Tong-Sheng, 1994. " Exploiting the Conditional Density in Estimating the Term Structure: An Application to the Cox, Ingersoll, and Ross Model," Journal of Finance, American Finance Association, vol. 49(4), pages 1279-1304, September.
  6. Miltersen, K. & K. Sandmann & D. Sondermann, 1994. "Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," Discussion Paper Serie B 308, University of Bonn, Germany.
  7. Ruslan Bikbov & Mikhail Chernov, 2009. "Unspanned Stochastic Volatility in Affine Models: Evidence from Eurodollar Futures and Options," Management Science, INFORMS, vol. 55(8), pages 1292-1305, August.
  8. Knez, Peter J & Litterman, Robert & Scheinkman, Jose Alexandre, 1994. " Explorations into Factors Explaining Money Market Returns," Journal of Finance, American Finance Association, vol. 49(5), pages 1861-82, December.
  9. Markus Leippold & Liuren Wu, 2002. "Asset Pricing Under The Quadratic Class," Finance 0207015, EconWPA.
  10. P. Santa-Clara & D. Sornette, 1998. "The Dynamics of the Forward Interest Rate Curve with Stochastic String Shocks," Papers cond-mat/9801321, arXiv.org.
  11. Longstaff, Francis A & Schwartz, Eduardo S, 1992. " Interest Rate Volatility and the Term Structure: A Two-Factor General Equilibrium Model," Journal of Finance, American Finance Association, vol. 47(4), pages 1259-82, September.
  12. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
  13. Qiang Dai & Kenneth J. Singleton, 2000. "Specification Analysis of Affine Term Structure Models," Journal of Finance, American Finance Association, vol. 55(5), pages 1943-1978, October.
  14. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
  15. Pennacchi, George G, 1991. "Identifying the Dynamics of Real Interest Rates and Inflation: Evidence Using Survey Data," Review of Financial Studies, Society for Financial Studies, vol. 4(1), pages 53-86.
  16. Marek Rutkowski & Marek Musiela, 1997. "Continuous-time term structure models: Forward measure approach (*)," Finance and Stochastics, Springer, vol. 1(4), pages 261-291.
  17. Alan Brace & Dariusz G¬łatarek & Marek Musiela, 1997. "The Market Model of Interest Rate Dynamics," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 127-155.
  18. Duffie, Darrell & Singleton, Kenneth J, 1997. " An Econometric Model of the Term Structure of Interest-Rate Swap Yields," Journal of Finance, American Finance Association, vol. 52(4), pages 1287-1321, September.
  19. Haitao Li & Feng Zhao, 2006. "Unspanned Stochastic Volatility: Evidence from Hedging Interest Rate Derivatives," Journal of Finance, American Finance Association, vol. 61(1), pages 341-378, 02.
  20. Goldstein, Robert S, 2000. "The Term Structure of Interest Rates as a Random Field," Review of Financial Studies, Society for Financial Studies, vol. 13(2), pages 365-84.
  21. Darrell Duffie & Rui Kan, 1996. "A Yield-Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406.
  22. Pierre Collin-Dufresne & Robert S. Goldstein, 2002. "Do Bonds Span the Fixed Income Markets? Theory and Evidence for Unspanned Stochastic Volatility," Journal of Finance, American Finance Association, vol. 57(4), pages 1685-1730, 08.
  23. Gregory R. Duffee, 2002. "Term Premia and Interest Rate Forecasts in Affine Models," Journal of Finance, American Finance Association, vol. 57(1), pages 405-443, 02.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cup:jfinqa:v:44:y:2009:i:03:p:517-550_99. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.