IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Nonlinear Kalman Filtering in Affine Term Structure Models

  • Peter Christoffersen
  • Christian Dorion
  • Kris Jacobs
  • Lotfi Karoui

The extended Kalman filter, which linearizes the relationship between security prices and state variables, is widely used in fixed income applications. We investigate if the unscented Kalman filter should be used to capture nonlinearities, and compare the performance of the Kalman filter to that of the particle filter. We analyze the cross section of swap rates, which are mildly nonlinear in the states, and cap prices, which are highly nonlinear. When caps are used to filter the states, the unscented Kalman filter significantly outperforms its extended counterpart. The unscented Kalman filter also performs well when compared to the much more computationally intensive particle filter. These findings suggest that the unscented Kalman filter may prove to be a good approach for variety of problems in fixed income pricing.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.cirpee.org/fileadmin/documents/Cahiers_2014/CIRPEE14-04.pdf
Download Restriction: no

Paper provided by CIRPEE in its series Cahiers de recherche with number 1404.

as
in new window

Length:
Date of creation: 2014
Date of revision:
Handle: RePEc:lvl:lacicr:1404
Contact details of provider: Postal: CP 8888, succursale Centre-Ville, Montréal, QC H3C 3P8
Phone: (514) 987-8161
Web page: http://www.cirpee.org/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
  2. Bakshi, Gurdip & Carr, Peter & Wu, Liuren, 2008. "Stochastic risk premiums, stochastic skewness in currency options, and stochastic discount factors in international economies," Journal of Financial Economics, Elsevier, vol. 87(1), pages 132-156, January.
  3. Duan, Jin-Chuan & Simonato, Jean-Guy, 1999. " Estimating and Testing Exponential-Affine Term Structure Models by Kalman Filter," Review of Quantitative Finance and Accounting, Springer, vol. 13(2), pages 111-35, September.
  4. Egorov, Alexei V. & Hong, Yongmiao & Li, Haitao, 2006. "Validating forecasts of the joint probability density of bond yields: Can affine models beat random walk?," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 255-284.
  5. Feldhütter, Peter & Lando, David, 2008. "Decomposing swap spreads," Journal of Financial Economics, Elsevier, vol. 88(2), pages 375-405, May.
  6. Li, Junye, 2013. "An unscented Kalman smoother for volatility extraction: Evidence from stock prices and options," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 15-26.
  7. Cheridito, Patrick & Filipovic, Damir & Kimmel, Robert L., 2007. "Market price of risk specifications for affine models: Theory and evidence," Journal of Financial Economics, Elsevier, vol. 83(1), pages 123-170, January.
  8. Chen, Ren-Raw & Cheng, Xiaolin & Fabozzi, Frank J. & Liu, Bo, 2008. "An Explicit, Multi-Factor Credit Default Swap Pricing Model with Correlated Factors," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 43(01), pages 123-160, March.
  9. Babbs, Simon H. & Nowman, K. Ben, 1999. "Kalman Filtering of Generalized Vasicek Term Structure Models," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(01), pages 115-130, March.
  10. Li, Junye, 2011. "Sequential Bayesian Analysis of Time-Changed Infinite Activity Derivatives Pricing Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(4), pages 468-480.
  11. Feng Zhao & Robert Jarrow & Haitao Li, 2004. "Interest Rate Caps Smile Too! But Can the LIBOR Market Models Capture It?," Econometric Society 2004 North American Winter Meetings 431, Econometric Society.
  12. Backus, David & Foresi, Silverio & Mozumdar, Abon & Wu, Liuren, 2001. "Predictable changes in yields and forward rates," Journal of Financial Economics, Elsevier, vol. 59(3), pages 281-311, March.
  13. Peter Carr & Liuren Wu, 2004. "Stochastic Skew in Currency Options," Finance 0409014, EconWPA.
  14. Gregory R. Duffee, 1996. "Estimating the price of default risk," Finance and Economics Discussion Series 96-29, Board of Governors of the Federal Reserve System (U.S.).
  15. Ruslan Bikbov & Mikhail Chernov, 2009. "Unspanned Stochastic Volatility in Affine Models: Evidence from Eurodollar Futures and Options," Management Science, INFORMS, vol. 55(8), pages 1292-1305, August.
  16. Yacine Aït-Sahalia & Robert Kimmel, 2002. "Estimating Affine Multifactor Term Structure Models Using Closed-Form Likelihood Expansions," NBER Technical Working Papers 0286, National Bureau of Economic Research, Inc.
  17. de Jong, Frank, 2000. "Time Series and Cross-Section Information in Affine Term-Structure Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 300-314, July.
  18. Torben G. Andersen & Luca Benzoni, 2007. "Do Bonds Span Volatility Risk in the U.S. Treasury Market? A Specification test for Affine Term Structure Models," NBER Working Papers 12962, National Bureau of Economic Research, Inc.
  19. Pierre Collin-Dufresne & Robert S. Goldstein, 2002. "Do Bonds Span the Fixed Income Markets? Theory and Evidence for Unspanned Stochastic Volatility," Journal of Finance, American Finance Association, vol. 57(4), pages 1685-1730, 08.
  20. Gregory R. Duffee, 2002. "Term Premia and Interest Rate Forecasts in Affine Models," Journal of Finance, American Finance Association, vol. 57(1), pages 405-443, 02.
  21. Pearson, Neil D & Sun, Tong-Sheng, 1994. " Exploiting the Conditional Density in Estimating the Term Structure: An Application to the Cox, Ingersoll, and Ross Model," Journal of Finance, American Finance Association, vol. 49(4), pages 1279-1304, September.
  22. Haitao Li & Feng Zhao, 2006. "Unspanned Stochastic Volatility: Evidence from Hedging Interest Rate Derivatives," Journal of Finance, American Finance Association, vol. 61(1), pages 341-378, 02.
  23. Samuel Thompson, 2008. "Identifying Term Structure Volatility from the LIBOR-Swap Curve," Review of Financial Studies, Society for Financial Studies, vol. 21(2), pages 819-854, April.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:lvl:lacicr:1404. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Johanne Perron)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.