IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Term structure models and the zero bound: An empirical investigation of Japanese yields

  • Kim, Don H.
  • Singleton, Kenneth J.
Registered author(s):

    When Japanese short-term bond yields were near their zero bound, yields on long-term bonds showed substantial fluctuation, and there was a strong positive relationship between the level of interest rates and yield volatilities/risk premiums. We explore whether several families of dynamic term structure models that enforce a zero lower bound on short rates imply conditional distributions of Japanese bond yields consistent with these patterns. Multi-factor “shadow-rate” and quadratic-Gaussian models, evaluated at their maximum likelihood estimates, capture many features of the data. Furthermore, model-implied risk premiums track realized excess returns during extended periods of near-zero short rates. In contrast, the conditional distributions implied by non-negative affine models do not match their sample counterparts, and standard Gaussian affine models generate implausibly large negative risk premiums.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407612001352
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Econometrics.

    Volume (Year): 170 (2012)
    Issue (Month): 1 ()
    Pages: 32-49

    as
    in new window

    Handle: RePEc:eee:econom:v:170:y:2012:i:1:p:32-49
    Contact details of provider: Web page: http://www.elsevier.com/locate/jeconom

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. de Jong, Frank, 2000. "Time Series and Cross-Section Information in Affine Term-Structure Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 300-314, July.
    2. Monika Piazzesi & Eric T. Swanson, 2006. "Futures prices as risk-adjusted forecasts of monetary policy," Working Paper Series 2006-23, Federal Reserve Bank of San Francisco.
    3. Pierre Collin-Dufresne & Robert S. Goldstein, 2002. "Do Bonds Span the Fixed Income Markets? Theory and Evidence for Unspanned Stochastic Volatility," Journal of Finance, American Finance Association, vol. 57(4), pages 1685-1730, 08.
    4. Longstaff, Francis A., 1992. "Multiple equilibria and term structure models," Journal of Financial Economics, Elsevier, vol. 32(3), pages 333-344, December.
    5. Leippold, Markus & Wu, Liuren, 2002. "Asset Pricing under the Quadratic Class," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 37(02), pages 271-295, June.
    6. John H. Cochrane & Monika Piazzesi, 2005. "Bond Risk Premia," American Economic Review, American Economic Association, vol. 95(1), pages 138-160, March.
    7. Corradi, Valentina, 2000. "Reconsidering the continuous time limit of the GARCH(1, 1) process," Journal of Econometrics, Elsevier, vol. 96(1), pages 145-153, May.
    8. Collin-Dufresne, Pierre & Goldstein, Robert S. & Jones, Christopher S., 2009. "Can interest rate volatility be extracted from the cross section of bond yields?," Journal of Financial Economics, Elsevier, vol. 94(1), pages 47-66, October.
    9. Haitao Li & Feng Zhao, 2006. "Unspanned Stochastic Volatility: Evidence from Hedging Interest Rate Derivatives," Journal of Finance, American Finance Association, vol. 61(1), pages 341-378, 02.
    10. Stanton, Richard, 1997. " A Nonparametric Model of Term Structure Dynamics and the Market Price of Interest Rate Risk," Journal of Finance, American Finance Association, vol. 52(5), pages 1973-2002, December.
    11. Duffie, Darrell & Singleton, Kenneth J, 1997. " An Econometric Model of the Term Structure of Interest-Rate Swap Yields," Journal of Finance, American Finance Association, vol. 52(4), pages 1287-1321, September.
    12. Greg Duffee, 2010. "Sharpe ratios in term structure models," Economics Working Paper Archive 575, The Johns Hopkins University,Department of Economics.
    13. Miyao, Ryuzo, 2000. "The Role of Monetary Policy in Japan: A Break in the 1990s?," Journal of the Japanese and International Economies, Elsevier, vol. 14(4), pages 366-384, December.
    14. Dong-Hyun Ahn & Robert F. Dittmar, 2002. "Quadratic Term Structure Models: Theory and Evidence," Review of Financial Studies, Society for Financial Studies, vol. 15(1), pages 243-288, March.
    15. Gregory R. Duffee, 2002. "Term Premia and Interest Rate Forecasts in Affine Models," Journal of Finance, American Finance Association, vol. 57(1), pages 405-443, 02.
    16. Qiang Dai & Kenneth J. Singleton, 2000. "Specification Analysis of Affine Term Structure Models," Journal of Finance, American Finance Association, vol. 55(5), pages 1943-1978, October.
    17. Feldhütter, Peter & Lando, David, 2008. "Decomposing swap spreads," Journal of Financial Economics, Elsevier, vol. 88(2), pages 375-405, May.
    18. Black, Fischer, 1995. " Interest Rates as Options," Journal of Finance, American Finance Association, vol. 50(5), pages 1371-76, December.
    19. Jacobs, Kris & Karoui, Lotfi, 2009. "Conditional volatility in affine term-structure models: Evidence from Treasury and swap markets," Journal of Financial Economics, Elsevier, vol. 91(3), pages 288-318, March.
    20. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
    21. Cheridito, Patrick & Filipovic, Damir & Kimmel, Robert L., 2007. "Market price of risk specifications for affine models: Theory and evidence," Journal of Financial Economics, Elsevier, vol. 83(1), pages 123-170, January.
    22. Darrell Duffie & Rui Kan, 1996. "A Yield-Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406.
    23. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "A Theory of the Term Structure of Interest Rates," Econometrica, Econometric Society, vol. 53(2), pages 385-407, March.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:170:y:2012:i:1:p:32-49. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.