IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v210y2021ics0951832021000818.html
   My bibliography  Save this article

Randomized quasi-Monte Carlo methods in global sensitivity analysis

Author

Listed:
  • Ökten, Giray
  • Liu, Yaning

Abstract

Randomized quasi-Monte Carlo methods have enjoyed increasing popularity in applications due to their faster convergence rate than Monte Carlo, and the existence of simple statistical tools to analyze the error of their estimates similar to Monte Carlo. In this paper we give a survey of randomized quasi-Monte Carlo methods, transformation methods for low-discrepancy sequences, and provide some examples.

Suggested Citation

  • Ökten, Giray & Liu, Yaning, 2021. "Randomized quasi-Monte Carlo methods in global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
  • Handle: RePEc:eee:reensy:v:210:y:2021:i:c:s0951832021000818
    DOI: 10.1016/j.ress.2021.107520
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021000818
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107520?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Yaning & Yousuff Hussaini, M. & Ökten, Giray, 2016. "Accurate construction of high dimensional model representation with applications to uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 281-295.
    2. Linlin Xu & Giray Ökten, 2015. "High-performance financial simulation using randomized quasi-Monte Carlo methods," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1425-1436, August.
    3. Liu, Ruixue & Owen, Art B., 2006. "Estimating Mean Dimensionality of Analysis of Variance Decompositions," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 712-721, June.
    4. Kucherenko, S. & Song, S., 2017. "Different numerical estimators for main effect global sensitivity indices," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 222-238.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jung, WoongHee & Taflanidis, Alexandros A., 2023. "Efficient global sensitivity analysis for high-dimensional outputs combining data-driven probability models and dimensionality reduction," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    2. Ballester-Ripoll, Rafael & Leonelli, Manuele, 2022. "Computing Sobol indices in probabilistic graphical models," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    3. Zhang, Qiang & Zhao, Yan-Gang & Kolozvari, Kristijan & Xu, Lei, 2022. "Reliability analysis of reinforced concrete structure against progressive collapse," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    4. Zhang, Limao & Lin, Penghui, 2021. "Multi-objective optimization for limiting tunnel-induced damages considering uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    5. Yao, Wen & Zheng, Xiaohu & Zhang, Jun & Wang, Ning & Tang, Guijian, 2023. "Deep adaptive arbitrary polynomial chaos expansion: A mini-data-driven semi-supervised method for uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    6. Mercadier Cécile & Ressel Paul, 2021. "Hoeffding–Sobol decomposition of homogeneous co-survival functions: from Choquet representation to extreme value theory application," Dependence Modeling, De Gruyter, vol. 9(1), pages 179-198, January.
    7. Chen, Xuyong & Xu, Zhifeng & Wu, Yushun & Wu, Qiaoyun, 2023. "Heuristic algorithms for reliability estimation based on breadth-first search of a grid tree," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    8. Li, Shen & Kim, Do Kyun & Benson, Simon, 2021. "A probabilistic approach to assess the computational uncertainty of ultimate strength of hull girders," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    9. Mercadier, Cécile & Roustant, Olivier & Genest, Christian, 2022. "Linking the Hoeffding–Sobol and Möbius formulas through a decomposition of Kuo, Sloan, Wasilkowski, and Woźniakowski," Statistics & Probability Letters, Elsevier, vol. 185(C).
    10. Zhang, Feng & Wang, Xinhe & Wang, Weiyue & Zhang, Jiajia & Du, Ruijie & Li, Bingqiang & Liu, Wei, 2023. "Uncertainty analysis of photovoltaic cells to determine probability of functional failure," Applied Energy, Elsevier, vol. 332(C).
    11. Zeng, Chen-dong & Qiu, Zhi-cheng & Zhang, Fen-hua & Zhang, Xian-min, 2023. "Error modelling and motion reliability analysis of a multi-DOF redundant parallel mechanism with hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    12. Wang, Chaonan & Liu, Qiongyang & Xing, Liudong & Guan, Quanlong & Yang, Chunhui & Yu, Min, 2022. "Reliability analysis of smart home sensor systems subject to competing failures," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    13. Pedram Asef & Marzia Milan & Andrew Lapthorn & Sanjeevikumar Padmanaban, 2021. "Future Trends and Aging Analysis of Battery Energy Storage Systems for Electric Vehicles," Sustainability, MDPI, vol. 13(24), pages 1-28, December.
    14. Wang, Yanzhong & Xie, Bin & E, Shiyuan, 2022. "Adaptive relevance vector machine combined with Markov-chain-based importance sampling for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 220(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kucherenko, Sergei & Song, Shufang & Wang, Lu, 2019. "Quantile based global sensitivity measures," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 35-48.
    2. Xu, Jun & Wang, Ding, 2019. "Structural reliability analysis based on polynomial chaos, Voronoi cells and dimension reduction technique," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 329-340.
    3. Xiaoqun Wang, 2016. "Handling Discontinuities in Financial Engineering: Good Path Simulation and Smoothing," Operations Research, INFORMS, vol. 64(2), pages 297-314, April.
    4. Mercadier Cécile & Ressel Paul, 2021. "Hoeffding–Sobol decomposition of homogeneous co-survival functions: from Choquet representation to extreme value theory application," Dependence Modeling, De Gruyter, vol. 9(1), pages 179-198, January.
    5. Pierre L’Ecuyer, 2009. "Quasi-Monte Carlo methods with applications in finance," Finance and Stochastics, Springer, vol. 13(3), pages 307-349, September.
    6. Sobol Ilya M. & Shukhman Boris V., 2020. "QMC integration errors and quasi-asymptotics," Monte Carlo Methods and Applications, De Gruyter, vol. 26(3), pages 171-176, September.
    7. Pierryves Padey & Kyriaki Goulouti & Guy Wagner & Blaise Périsset & Sébastien Lasvaux, 2021. "Understanding the Reasons behind the Energy Performance Gap of an Energy-Efficient Building, through a Probabilistic Approach and On-Site Measurements," Energies, MDPI, vol. 14(19), pages 1-15, September.
    8. Xiaoqun Wang & Ken Seng Tan, 2013. "Pricing and Hedging with Discontinuous Functions: Quasi-Monte Carlo Methods and Dimension Reduction," Management Science, INFORMS, vol. 59(2), pages 376-389, July.
    9. Lamboni, Matieyendou, 2021. "Derivative-based integral equalities and inequality: A proxy-measure for sensitivity analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 137-161.
    10. Mercadier, Cécile & Roustant, Olivier & Genest, Christian, 2022. "Linking the Hoeffding–Sobol and Möbius formulas through a decomposition of Kuo, Sloan, Wasilkowski, and Woźniakowski," Statistics & Probability Letters, Elsevier, vol. 185(C).
    11. Shukhman Boris V. & Sobol Ilya M., 2015. "A limit theorem for average dimensions," Monte Carlo Methods and Applications, De Gruyter, vol. 21(2), pages 175-178, June.
    12. Sobol Ilya M. & Shukhman Boris V., 2018. "On average dimensions of particle transport estimators," Monte Carlo Methods and Applications, De Gruyter, vol. 24(2), pages 147-151, June.
    13. Serafino, Aldo & Obert, Benoit & Vergé, Léa & Cinnella, Paola, 2020. "Robust optimization of an organic Rankine cycle for geothermal application," Renewable Energy, Elsevier, vol. 161(C), pages 1120-1129.
    14. Marco Bianchetti & Sergei Kucherenko & Stefano Scoleri, 2015. "Pricing and Risk Management with High-Dimensional Quasi Monte Carlo and Global Sensitivity Analysis," Papers 1504.02896, arXiv.org.
    15. Wong, Chun Yui & Seshadri, Pranay & Parks, Geoffrey, 2021. "Extremum sensitivity analysis with polynomial Monte Carlo filtering," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    16. Song, Shufang & Bai, Zhiwei & Kucherenko, Sergei & Wang, Lu & Yang, Caiqiong, 2021. "Quantile sensitivity measures based on subset simulation importance sampling," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    17. Sobol Ilya M. & Shukhman Boris V., 2014. "Quasi-Monte Carlo: A high-dimensional experiment," Monte Carlo Methods and Applications, De Gruyter, vol. 20(3), pages 167-171, September.
    18. Nabil Kahalé, 2020. "Randomized Dimension Reduction for Monte Carlo Simulations," Management Science, INFORMS, vol. 66(3), pages 1421-1439, March.
    19. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    20. Yu-Ying Tzeng & Paul M. Beaumont & Giray Ökten, 2018. "Time Series Simulation with Randomized Quasi-Monte Carlo Methods: An Application to Value at Risk and Expected Shortfall," Computational Economics, Springer;Society for Computational Economics, vol. 52(1), pages 55-77, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:210:y:2021:i:c:s0951832021000818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.