IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v212y2021ics095183202100154x.html
   My bibliography  Save this article

Extremum sensitivity analysis with polynomial Monte Carlo filtering

Author

Listed:
  • Wong, Chun Yui
  • Seshadri, Pranay
  • Parks, Geoffrey

Abstract

Global sensitivity analysis is a powerful set of ideas and heuristics for understanding the importance and interplay between uncertain parameters in a computational model. Such a model is characterized by a set of input parameters and an output quantity of interest, where we typically assume that the inputs are independent and their marginal densities are known. If the output quantity is smooth, polynomial chaos can be used to extract Sobol’ indices.

Suggested Citation

  • Wong, Chun Yui & Seshadri, Pranay & Parks, Geoffrey, 2021. "Extremum sensitivity analysis with polynomial Monte Carlo filtering," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
  • Handle: RePEc:eee:reensy:v:212:y:2021:i:c:s095183202100154x
    DOI: 10.1016/j.ress.2021.107609
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202100154X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107609?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blatman, Géraud & Sudret, Bruno, 2010. "Efficient computation of global sensitivity indices using sparse polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1216-1229.
    2. Yingcun Xia & Howell Tong & W. K. Li & Li‐Xing Zhu, 2002. "An adaptive estimation of dimension reduction space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 363-410, August.
    3. Sobol′ , I.M, 2001. "Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 55(1), pages 271-280.
    4. Sudret, B. & Mai, C.V., 2015. "Computing derivative-based global sensitivity measures using polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 241-250.
    5. Constantine, Paul G. & Diaz, Paul, 2017. "Global sensitivity metrics from active subspaces," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 1-13.
    6. Sudret, Bruno, 2008. "Global sensitivity analysis using polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 964-979.
    7. Liu, Ruixue & Owen, Art B., 2006. "Estimating Mean Dimensionality of Analysis of Variance Decompositions," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 712-721, June.
    8. Sobol’, I.M. & Kucherenko, S., 2009. "Derivative based global sensitivity measures and their link with global sensitivity indices," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(10), pages 3009-3017.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shang, Yue & Nogal, Maria & Teixeira, Rui & Wolfert, A.R. (Rogier) M., 2024. "Extreme-oriented sensitivity analysis using sparse polynomial chaos expansion. Application to train–track–bridge systems," Reliability Engineering and System Safety, Elsevier, vol. 243(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Zeping & Wang, Donghui & Okolo N, Patrick & Hu, Fan & Zhang, Weihua, 2016. "Global sensitivity analysis using a Gaussian Radial Basis Function metamodel," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 171-179.
    2. Becker, William, 2020. "Metafunctions for benchmarking in sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    3. Wu, Zeping & Wang, Wenjie & Wang, Donghui & Zhao, Kun & Zhang, Weihua, 2019. "Global sensitivity analysis using orthogonal augmented radial basis function," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 291-302.
    4. Konakli, Katerina & Sudret, Bruno, 2016. "Global sensitivity analysis using low-rank tensor approximations," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 64-83.
    5. Shang, Yue & Nogal, Maria & Teixeira, Rui & Wolfert, A.R. (Rogier) M., 2024. "Extreme-oriented sensitivity analysis using sparse polynomial chaos expansion. Application to train–track–bridge systems," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    6. Sudret, B. & Mai, C.V., 2015. "Computing derivative-based global sensitivity measures using polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 241-250.
    7. Lamboni, Matieyendou, 2020. "Derivative-based generalized sensitivity indices and Sobol’ indices," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 170(C), pages 236-256.
    8. Constantine, Paul G. & Diaz, Paul, 2017. "Global sensitivity metrics from active subspaces," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 1-13.
    9. Shang, Xiaobing & Wang, Lipeng & Fang, Hai & Lu, Lingyun & Zhang, Zhi, 2024. "Active Learning of Ensemble Polynomial Chaos Expansion Method for Global Sensitivity Analysis," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    10. Matieyendou Lamboni, 2020. "Uncertainty quantification: a minimum variance unbiased (joint) estimator of the non-normalized Sobol’ indices," Statistical Papers, Springer, vol. 61(5), pages 1939-1970, October.
    11. Borgonovo, Emanuele & Plischke, Elmar & Rabitti, Giovanni, 2024. "The many Shapley values for explainable artificial intelligence: A sensitivity analysis perspective," European Journal of Operational Research, Elsevier, vol. 318(3), pages 911-926.
    12. Cheng, Kai & Lu, Zhenzhou, 2018. "Sparse polynomial chaos expansion based on D-MORPH regression," Applied Mathematics and Computation, Elsevier, vol. 323(C), pages 17-30.
    13. Lambert, Romain S.C. & Lemke, Frank & Kucherenko, Sergei S. & Song, Shufang & Shah, Nilay, 2016. "Global sensitivity analysis using sparse high dimensional model representations generated by the group method of data handling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 128(C), pages 42-54.
    14. Deman, G. & Konakli, K. & Sudret, B. & Kerrou, J. & Perrochet, P. & Benabderrahmane, H., 2016. "Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in a multi-layered hydrogeological model," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 156-169.
    15. Brown, S. & Beck, J. & Mahgerefteh, H. & Fraga, E.S., 2013. "Global sensitivity analysis of the impact of impurities on CO2 pipeline failure," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 43-54.
    16. Pronzato, Luc, 2019. "Sensitivity analysis via Karhunen–Loève expansion of a random field model: Estimation of Sobol’ indices and experimental design," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 93-109.
    17. Lamboni, Matieyendou, 2021. "Derivative-based integral equalities and inequality: A proxy-measure for sensitivity analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 137-161.
    18. Touzani, Samir & Busby, Daniel, 2013. "Smoothing spline analysis of variance approach for global sensitivity analysis of computer codes," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 67-81.
    19. Zhang, Xufang & Pandey, Mahesh D., 2014. "An effective approximation for variance-based global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 164-174.
    20. Chen, Xin & Molina-Cristóbal, Arturo & Guenov, Marin D. & Riaz, Atif, 2019. "Efficient method for variance-based sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 97-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:212:y:2021:i:c:s095183202100154x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.