IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v257y2025ipas0951832025000092.html
   My bibliography  Save this article

Efficient, scalable emulation of stochastic simulators: A mixture density network based surrogate modeling framework

Author

Listed:
  • Peng, Han
  • Zhang, Jize

Abstract

This work focuses on the task of emulating stochastic simulators that generate random results given consistent inputs. Existing stochastic surrogate models can have limitations in characterizing complex output distributions or suffer from data inefficiency and high-dimensionality issues. As a remedy, we propose to introduce Mixture Density Networks (MDNs) as an advanced stochastic surrogate model. Flexible neural networks are utilized to parametrize Gaussian mixture models (GMMs) to capture complex input-dependent output conditional densities. MDNs, like typical neural networks, use multiple layers of nonlinear transformations to effectively manage the potentially high-dimensional or large-volume inputs. Statistically, MDNs eliminate the need for random seed control or replication by directly learning to maximize the training data likelihood. To further enhance MDN model robustness and mitigate over-fitting, we incorporate the hard parameter sharing and variance regularization technique, and Bayesian optimization to search for optimal MDN hyperparameters, unlocking its full potential as stochastic surrogates. The efficacy of our MDN stochastic surrogate model is illustrated through various academic and realistic examples. MDN is demonstrated to be consistently more flexible, accurate, and data-efficient than current stochastic surrogate workhorses.

Suggested Citation

  • Peng, Han & Zhang, Jize, 2025. "Efficient, scalable emulation of stochastic simulators: A mixture density network based surrogate modeling framework," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
  • Handle: RePEc:eee:reensy:v:257:y:2025:i:pa:s0951832025000092
    DOI: 10.1016/j.ress.2025.110806
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025000092
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110806?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Marrel, Amandine & Iooss, Bertrand, 2024. "Probabilistic surrogate modeling by Gaussian process: A review on recent insights in estimation and validation," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    2. Sudret, Bruno, 2008. "Global sensitivity analysis using polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 964-979.
    3. Bruce Ankenman & Barry L. Nelson & Jeremy Staum, 2010. "Stochastic Kriging for Simulation Metamodeling," Operations Research, INFORMS, vol. 58(2), pages 371-382, April.
    4. Urbina, Angel & Mahadevan, Sankaran & Paez, Thomas L., 2011. "Quantification of margins and uncertainties of complex systems in the presence of aleatoric and epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1114-1125.
    5. Millar, Robert & Li, Hui & Li, Jinglai, 2023. "Multicanonical sequential Monte Carlo sampler for uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    6. Brusaferri, Alessandro & Matteucci, Matteo & Spinelli, Stefano & Vitali, Andrea, 2022. "Probabilistic electric load forecasting through Bayesian Mixture Density Networks," Applied Energy, Elsevier, vol. 309(C).
    7. Ökten, Giray & Liu, Yaning, 2021. "Randomized quasi-Monte Carlo methods in global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    8. Shields, Michael D. & Zhang, Jiaxin, 2016. "The generalization of Latin hypercube sampling," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 96-108.
    9. Imbens, Guido W. & Lancaster, Tony, 1996. "Efficient estimation and stratified sampling," Journal of Econometrics, Elsevier, vol. 74(2), pages 289-318, October.
    10. Dasgupta, Agnimitra & Johnson, Erik A., 2024. "REIN: Reliability Estimation via Importance sampling with Normalizing flows," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    11. Zhang, Xiaobo & Lu, Zhenzhou & Cheng, Kai, 2022. "Cross-entropy-based directional importance sampling with von Mises-Fisher mixture model for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    12. Bigaud, David & Ali, Osama, 2014. "Time-variant flexural reliability of RC beams with externally bonded CFRP under combined fatigue-corrosion actions," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 257-270.
    13. Jung, WoongHee & Taflanidis, Alexandros A. & Kyprioti, Aikaterini P. & Zhang, Jize, 2024. "Adaptive multi-fidelity Monte Carlo for real-time probabilistic storm surge predictions," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    14. Bashtannyk, David M. & Hyndman, Rob J., 2001. "Bandwidth selection for kernel conditional density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 36(3), pages 279-298, May.
    15. Chen, Jie & Yu, Yang & Liu, Yongming, 2022. "Physics-guided mixture density networks for uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    16. Marrel, Amandine & Iooss, Bertrand, 2024. "Probabilistic surrogate modeling by Gaussian process: A new estimation algorithm for more robust prediction," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Yu & Ma, Yafei & Huang, Ke & Wang, Lei & Zhang, Jianren, 2024. "Digital twin Bayesian entropy framework for corrosion fatigue life prediction and calibration of bridge suspender," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    2. Jung, WoongHee & Taflanidis, Alexandros A., 2023. "Efficient global sensitivity analysis for high-dimensional outputs combining data-driven probability models and dimensionality reduction," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    3. Khakifirooz, Marzieh & Fathi, Michel & Lee, I-Chen & Tseng, Sheng-Tsaing, 2023. "Neural ordinary differential equation for sequential optimal design of fatigue test under accelerated life test analysis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    4. Zdeněk Kala, 2024. "Global Sensitivity Analysis of Structural Reliability Using Cliff Delta," Mathematics, MDPI, vol. 12(13), pages 1-18, July.
    5. Zhang, Qiang & Zhao, Yan-Gang & Kolozvari, Kristijan & Xu, Lei, 2022. "Reliability analysis of reinforced concrete structure against progressive collapse," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    6. Xiong, Ziluo & Jia, Gaofeng, 2025. "Data-driven global sensitivity analysis for group of random variables through knowledge-enhanced machine learning with normalizing flows," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    7. Xu, Yanwen & Bansal, Parth & Wang, Pingfeng & Li, Yumeng, 2025. "Physics-informed machine learning for system reliability analysis and design with partially observed information," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
    8. Gu, Hang-Hang & Wang, Run-Zi & Zhang, Kun & Li, Kai-Shang & Sun, Li & Zhang, Xian-Cheng & Tu, Shan-Tung, 2025. "Damage-driven framework for reliability assessment of steam turbine rotors operating under flexible conditions," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    9. Nguyen, Phong T.T. & Manuel, Lance, 2024. "Uncertainty quantification in low-probability response estimation using sliced inverse regression and polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    10. Novák, Lukáš & Valdebenito, Marcos & Faes, Matthias, 2025. "On fractional moment estimation from polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    11. Goda, Takashi, 2021. "A simple algorithm for global sensitivity analysis with Shapley effects," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    12. Yue, Wenhao & Yang, Chen & Shi, Chenyue & Yang, Jinguang & Liao, Naibing, 2024. "Uncertainty quantification of the inlet boundary conditions in a supercritical CO2 centrifugal compressor based on the non-intrusive polynomial chaos," Energy, Elsevier, vol. 310(C).
    13. Ballester-Ripoll, Rafael & Leonelli, Manuele, 2022. "Computing Sobol indices in probabilistic graphical models," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    14. Alauddin, Mohammad & Addo, Albert & Khan, Faisal & Amyotte, Paul, 2025. "Probabilistic modeling of explosibility of low reactivity dusts," Reliability Engineering and System Safety, Elsevier, vol. 257(PB).
    15. Mohseni-Gharyehsafa, Behnam & Hussain, Shahid & Fahy, Amy & De Rosa, Mattia & Pallonetto, Fabiano, 2025. "A hybrid Gaussian process-integrated deep learning model for retrofitted building energy optimization in smart city ecosystems," Applied Energy, Elsevier, vol. 388(C).
    16. Zhang, Ruixing & An, Liqiang & Yang, Xinmeng & He, Lun & Huang, Zenghao, 2025. "A distributed inference method integrating causal analysis and surrogate models for optimizing tuned mass damper parameters to enhance offshore wind turbine safety," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    17. Wang, Ke & Menon, Prathyush P. & Veenman, Joost & Bennani, Samir, 2025. "Safety exploration using Gaussian process classification for uncertain systems," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    18. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
    19. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    20. Daniel Harenberg & Stefano Marelli & Bruno Sudret & Viktor Winschel, 2019. "Uncertainty quantification and global sensitivity analysis for economic models," Quantitative Economics, Econometric Society, vol. 10(1), pages 1-41, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:257:y:2025:i:pa:s0951832025000092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.