IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v256y2025ics0951832024007518.html
   My bibliography  Save this article

Safety exploration using Gaussian process classification for uncertain systems

Author

Listed:
  • Wang, Ke
  • Menon, Prathyush P.
  • Veenman, Joost
  • Bennani, Samir

Abstract

In this paper, a novel method for identifying safe and unsafe regions of the system’s uncertain parameter space is proposed. For a given set of performance requirements, such estimation can be obtained by means of binary classification in which uncertain parameters are classified as either safe or unsafe in the sense that the given performance requirements are met or not. Hence, using Gaussian process classification it is possible to obtain (non-convex) safe and unsafe regions supported by minimum confidence levels of the corresponding estimations. We adopt active learning to update the Gaussian process classification model and to make more accurate predictions by selecting informative observations sequentially. The effectiveness of the proposed algorithm is demonstrated on various illustrative examples.

Suggested Citation

  • Wang, Ke & Menon, Prathyush P. & Veenman, Joost & Bennani, Samir, 2025. "Safety exploration using Gaussian process classification for uncertain systems," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:reensy:v:256:y:2025:i:c:s0951832024007518
    DOI: 10.1016/j.ress.2024.110680
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024007518
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110680?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marrel, Amandine & Iooss, Bertrand, 2024. "Probabilistic surrogate modeling by Gaussian process: A review on recent insights in estimation and validation," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    2. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    3. Zio, E., 2009. "Reliability engineering: Old problems and new challenges," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 125-141.
    4. Ji, Haodong & Lyu, Yuhui & Tian, Zushi & Ye, Hailong, 2025. "Assessment of corrosion probability of steel in mortars using machine learning," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    5. Guo, Kai & Ye, Zhisheng & Liu, Datong & Peng, Xiyuan, 2021. "UAV flight control sensing enhancement with a data-driven adaptive fusion model," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    6. Li, Xiang & Zhang, Wei & Ding, Qian, 2019. "Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 208-218.
    7. Marrel, Amandine & Iooss, Bertrand, 2024. "Probabilistic surrogate modeling by Gaussian process: A new estimation algorithm for more robust prediction," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alauddin, Mohammad & Addo, Albert & Khan, Faisal & Amyotte, Paul, 2025. "Probabilistic modeling of explosibility of low reactivity dusts," Reliability Engineering and System Safety, Elsevier, vol. 257(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Xiangyu & Qin, Yong & Li, Bin & Wang, Biao & Yi, Xiaojian & Jia, Limin, 2024. "A core space gradient projection-based continual learning framework for remaining useful life prediction of machinery under variable operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    2. Park, Chan Hee & Kim, Hyeongmin & Suh, Chaehyun & Chae, Minseok & Yoon, Heonjun & Youn, Byeng D., 2022. "A health image for deep learning-based fault diagnosis of a permanent magnet synchronous motor under variable operating conditions: Instantaneous current residual map," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    3. Xu, Yanwen & Bansal, Parth & Wang, Pingfeng & Li, Yumeng, 2025. "Physics-informed machine learning for system reliability analysis and design with partially observed information," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
    4. Phan, Hieu Chi & Dhar, Ashutosh Sutra & Bui, Nang Duc, 2023. "Reliability assessment of pipelines crossing strike-slip faults considering modeling uncertainties using ANN models," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    6. Guan, Yang & Meng, Zong & Sun, Dengyun & Liu, Jingbo & Fan, Fengjie, 2021. "2MNet: Multi-sensor and multi-scale model toward accurate fault diagnosis of rolling bearing," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    7. Peng, Han & Zhang, Jize, 2025. "Efficient, scalable emulation of stochastic simulators: A mixture density network based surrogate modeling framework," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    8. Zhang, Xiaobo & Lu, Zhenzhou & Cheng, Kai, 2022. "Cross-entropy-based directional importance sampling with von Mises-Fisher mixture model for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    9. Alauddin, Mohammad & Addo, Albert & Khan, Faisal & Amyotte, Paul, 2025. "Probabilistic modeling of explosibility of low reactivity dusts," Reliability Engineering and System Safety, Elsevier, vol. 257(PB).
    10. Ma, Zhonghai & Liao, Haitao & Gao, Jianhang & Nie, Songlin & Geng, Yugang, 2023. "Physics-Informed Machine Learning for Degradation Modeling of an Electro-Hydrostatic Actuator System," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    11. Mohseni-Gharyehsafa, Behnam & Hussain, Shahid & Fahy, Amy & De Rosa, Mattia & Pallonetto, Fabiano, 2025. "A hybrid Gaussian process-integrated deep learning model for retrofitted building energy optimization in smart city ecosystems," Applied Energy, Elsevier, vol. 388(C).
    12. Azar, Kamyar & Hajiakhondi-Meybodi, Zohreh & Naderkhani, Farnoosh, 2022. "Semi-supervised clustering-based method for fault diagnosis and prognosis: A case study," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    13. Zhang, Ruixing & An, Liqiang & Yang, Xinmeng & He, Lun & Huang, Zenghao, 2025. "A distributed inference method integrating causal analysis and surrogate models for optimizing tuned mass damper parameters to enhance offshore wind turbine safety," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    14. Asadzadeh, S.M. & Azadeh, A., 2014. "An integrated systemic model for optimization of condition-based maintenance with human error," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 117-131.
    15. Rajkumar Bhimgonda Patil & Basavraj S Kothavale & Laxman Yadu Waghmode, 2019. "Selection of time-to-failure model for computerized numerical control turning center based on the assessment of trends in maintenance data," Journal of Risk and Reliability, , vol. 233(2), pages 105-117, April.
    16. Li, Yuanfu & Chen, Yao & Hu, Zhenchao & Zhang, Huisheng, 2023. "Remaining useful life prediction of aero-engine enabled by fusing knowledge and deep learning models," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    17. Rodrigo Andrade & Somayeh Moazeni & Jose Emmanuel Ramirez‐Marquez, 2020. "A systems perspective on contact centers and customer service reliability modeling," Systems Engineering, John Wiley & Sons, vol. 23(2), pages 221-236, March.
    18. Liu, Jiale & Wang, Huan, 2024. "A brain-inspired energy-efficient Wide Spiking Residual Attention Framework for intelligent fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    19. Yi Lyu & Qichen Zhang & Zhenfei Wen & Aiguo Chen, 2022. "Remaining Useful Life Prediction Based on Multi-Representation Domain Adaptation," Mathematics, MDPI, vol. 10(24), pages 1-18, December.
    20. Zhang, Dingyang & Zhang, Yiming & Li, Pei & Zhang, Shuyou, 2025. "Kernel Reinforcement Learning for sampling-efficient risk management of large-scale engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:256:y:2025:i:c:s0951832024007518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.