IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v213y2021ics0951832021001952.html
   My bibliography  Save this article

UAV flight control sensing enhancement with a data-driven adaptive fusion model

Author

Listed:
  • Guo, Kai
  • Ye, Zhisheng
  • Liu, Datong
  • Peng, Xiyuan

Abstract

Accurate sensing is essential for achieving reliable control of unmanned aerial vehicles (UAVs). In prior works, the unscented Kalman filter (UKF) has shown superior performance in both estimation accuracy and computation efficiency, which makes it suitable for onboard sensing enhancement. However, the prediction accuracy of existing filter-based statistical models is generally assumed to be invariant of the flight conditions. To avoid deterioration in the estimation performance, this paper proposes a novel data-driven adaptive fusion state space model for quantifying the prediction uncertainty of the system model. Based on the multi-output Gaussian process regression (GPR), a rule for tuning the noise parameter of the statistical model is provided based on the estimated variance. The sparse GPR model is utilized to incorporate available features and obtain high estimation accuracy under dynamic operation conditions. Simulation results have illustrated the superior performance of the proposed approach in state estimation for the UAV.

Suggested Citation

  • Guo, Kai & Ye, Zhisheng & Liu, Datong & Peng, Xiyuan, 2021. "UAV flight control sensing enhancement with a data-driven adaptive fusion model," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
  • Handle: RePEc:eee:reensy:v:213:y:2021:i:c:s0951832021001952
    DOI: 10.1016/j.ress.2021.107654
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021001952
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107654?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bhattacharya, Arnab & Wilson, Simon P., 2018. "Sequential Bayesian inference for static parameters in dynamic state space models," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 187-203.
    2. Zheng, Xiujuan & Fang, Huajing, 2015. "An integrated unscented kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 74-82.
    3. Di Rito, G. & Schettini, F., 2016. "Impacts of safety on the design of light remotely-piloted helicopter flight control systems," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 121-129.
    4. Iamsumang, Chonlagarn & Mosleh, Ali & Modarres, Mohammad, 2018. "Monitoring and learning algorithms for dynamic hybrid Bayesian network in on-line system health management applications," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 118-129.
    5. Jeong, Haedong & Park, Bumsoo & Park, Seungtae & Min, Hyungcheol & Lee, Seungchul, 2019. "Fault detection and identification method using observer-based residuals," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 27-40.
    6. Wang, Lei & Wu, Changxu & Sun, Ruishan, 2014. "An analysis of flight Quick Access Recorder (QAR) data and its applications in preventing landing incidents," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 86-96.
    7. Chen, Jinglong & Jing, Hongjie & Chang, Yuanhong & Liu, Qian, 2019. "Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 372-382.
    8. Li, Naipeng & Gebraeel, Nagi & Lei, Yaguo & Bian, Linkan & Si, Xiaosheng, 2019. "Remaining useful life prediction of machinery under time-varying operating conditions based on a two-factor state-space model," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 88-100.
    9. Hu, Bin & Seiler, Peter, 2015. "Pivotal decomposition for reliability analysis of fault tolerant control systems on unmanned aerial vehicles," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 130-141.
    10. White, Alejandro & Karimoddini, Ali, 2020. "Event-based diagnosis of flight maneuvers of a fixed-wing aircraft," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Ning & Tian, Tian-zi & He, Jia-tao & Zhang, Chang-zhen & Yang, Jun, 2024. "Transmission reliability evaluation of wireless sensor networks considering channel capacity randomness and energy consumption failure," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    2. Meng, Xueyu & Han, Sijie & Wu, Leilei & Si, Shubin & Cai, Zhiqiang, 2022. "Analysis of epidemic vaccination strategies by node importance and evolutionary game on complex networks," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    3. Zhao, Xian & Lv, Zuheng & Qiu, Qingan & Wu, Yaguang, 2023. "Designing two-level rescue depot location and dynamic rescue policies for unmanned vehicles," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    4. Wang, Ning & Xiao, Yiyong & Tian, Tianzi & Yang, Jun, 2023. "The optimal 5G base station location of the wireless sensor network considering timely reliability," Reliability Engineering and System Safety, Elsevier, vol. 236(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Naipeng & Gebraeel, Nagi & Lei, Yaguo & Fang, Xiaolei & Cai, Xiao & Yan, Tao, 2021. "Remaining useful life prediction based on a multi-sensor data fusion model," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    2. Tang, Ting & Yuan, Huimei, 2022. "A hybrid approach based on decomposition algorithm and neural network for remaining useful life prediction of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    3. Moradi, Ramin & Cofre-Martel, Sergio & Lopez Droguett, Enrique & Modarres, Mohammad & Groth, Katrina M., 2022. "Integration of deep learning and Bayesian networks for condition and operation risk monitoring of complex engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    4. Cai, Yishan & Yang, Lin & Deng, Zhongwei & Zhao, Xiaowei & Deng, Hao, 2018. "Online identification of lithium-ion battery state-of-health based on fast wavelet transform and cross D-Markov machine," Energy, Elsevier, vol. 147(C), pages 621-635.
    5. Xu, Zhiqiang & Zhang, Yujie & Miao, Qiang, 2024. "An attention-based multi-scale temporal convolutional network for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    6. Quintanilha, Igor M. & Elias, Vitor R.M. & da Silva, Felipe B. & Fonini, Pedro A.M. & da Silva, Eduardo A.B. & Netto, Sergio L. & Apolinário, José A. & de Campos, Marcello L.R. & Martins, Wallace A., 2021. "A fault detector/classifier for closed-ring power generators using machine learning," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    7. Ta, Yuntian & Li, Yanfeng & Cai, Wenan & Zhang, Qianqian & Wang, Zhijian & Dong, Lei & Du, Wenhua, 2023. "Adaptive staged remaining useful life prediction method based on multi-sensor and multi-feature fusion," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    8. Li, Yuanfu & Chen, Yifan & Shao, Haonan & Zhang, Huisheng, 2023. "A novel dual attention mechanism combined with knowledge for remaining useful life prediction based on gated recurrent units," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    9. E. Skordilis & R. Moghaddass, 2017. "A condition monitoring approach for real-time monitoring of degrading systems using Kalman filter and logistic regression," International Journal of Production Research, Taylor & Francis Journals, vol. 55(19), pages 5579-5596, October.
    10. Xiao, Lei & Tang, Junxuan & Zhang, Xinghui & Bechhoefer, Eric & Ding, Siyi, 2021. "Remaining useful life prediction based on intentional noise injection and feature reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    11. Ma, Guijun & Zhang, Yong & Cheng, Cheng & Zhou, Beitong & Hu, Pengchao & Yuan, Ye, 2019. "Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    12. Liao, Jing & Peng, Tao & Xu, Yansong & Gui, Gui & Yang, Chao & Yang, Chunhua & Gui, Weihua, 2024. "Task-orientated probabilistic damage model with interdependent degradation behaviors for RUL prediction of traction converter systems," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    13. Nathaniel Tomasetti & Catherine Forbes & Anastasios Panagiotelis, 2019. "Updating Variational Bayes: Fast Sequential Posterior Inference," Monash Econometrics and Business Statistics Working Papers 13/19, Monash University, Department of Econometrics and Business Statistics.
    14. Xu, Xin & Chen, Nan, 2017. "A state-space-based prognostics model for lithium-ion battery degradation," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 47-57.
    15. Jahani, Salman & Zhou, Shiyu & Veeramani, Dharmaraj, 2021. "Stochastic prognostics under multiple time-varying environmental factors," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    16. Zhou, Haoxuan & Wang, Bingsen & Zio, Enrico & Wen, Guangrui & Liu, Zimin & Su, Yu & Chen, Xuefeng, 2023. "Hybrid system response model for condition monitoring of bearings under time-varying operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    17. Mark W Wiggins & Jaime Auton & Piers Bayl-Smith & Ann Carrigan, 2020. "Optimising the future of technology in organisations: A human factors perspective," Australian Journal of Management, Australian School of Business, vol. 45(3), pages 449-467, August.
    18. Lu, Binbin & Dong, Jintao & Wang, Chun & Sun, Huabo & Yao, Hongyu, 2024. "High-resolution spatio-temporal estimation of CO2 emissions from China's civil aviation industry," Applied Energy, Elsevier, vol. 373(C).
    19. Wen, Pengfei & Zhao, Shuai & Chen, Shaowei & Li, Yong, 2021. "A generalized remaining useful life prediction method for complex systems based on composite health indicator," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    20. Liu, Di & Wang, Shaoping, 2021. "An artificial neural network supported stochastic process for degradation modeling and prediction," Reliability Engineering and System Safety, Elsevier, vol. 214(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:213:y:2021:i:c:s0951832021001952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.