IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v226y2022ics095183202200326x.html
   My bibliography  Save this article

Efficient temporal flow Transformer accompanied with multi-head probsparse self-attention mechanism for remaining useful life prognostics

Author

Listed:
  • Chang, Yuanhong
  • Li, Fudong
  • Chen, Jinglong
  • Liu, Yulang
  • Li, Zipeng

Abstract

Predictive maintenance, such as remaining useful life (RUL) prognostics, requires precise long time-series forecasting, which demands a higher predictive capability of data-driven models. Nevertheless, the typical convolution and recurrent frameworks are still inadequate in the feature extraction and temporal complexity analysis, which makes them difficult to efficiently capture the precise long-term dependency coupling. Recent research has demonstrated the potential of Transformer-based framework to improve the prediction capability by the massive success in sequence processing. Inspired by the above, this paper proposes an efficient end-to-end Temporal Flow Transformer (TFT) for RUL prognostics of rolling bearings. Its main framework is composed of multi-layer encoders, which can directly extract effective degradation features from the time-frequency representations of raw signals, with two distinctive characteristics: (1) Specially designed multi-head probsparse self-attention mechanism can effectively highlight the dominant attention, which makes the TFT have considerable performance in reducing the computational complexity of extremely long time-series; (2) The TFT trained by knowledge-induced distillation strategy can significantly improve its domain adaptability, making it possible to achieve accurate RUL prediction under cross-operating conditions. Extensive experiments on two life-cycle bearing datasets indicate that the TFT greatly outperforms the existing state-of-the-art methods and provides a new solution for RUL prognostics.

Suggested Citation

  • Chang, Yuanhong & Li, Fudong & Chen, Jinglong & Liu, Yulang & Li, Zipeng, 2022. "Efficient temporal flow Transformer accompanied with multi-head probsparse self-attention mechanism for remaining useful life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:reensy:v:226:y:2022:i:c:s095183202200326x
    DOI: 10.1016/j.ress.2022.108701
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202200326X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108701?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dai, Le & Guo, Junyu & Wan, Jia-Lun & Wang, Jiang & Zan, Xueping, 2022. "A reliability evaluation model of rolling bearings based on WKN-BiGRU and Wiener process," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    2. Cao, Yudong & Ding, Yifei & Jia, Minping & Tian, Rushuai, 2021. "A novel temporal convolutional network with residual self-attention mechanism for remaining useful life prediction of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    3. Pan, Tongyang & Chen, Jinglong & Ye, Zhisheng & Li, Aimin, 2022. "A multi-head attention network with adaptive meta-transfer learning for RUL prediction of rocket engines," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    4. Xiang, Sheng & Qin, Yi & Luo, Jun & Pu, Huayan & Tang, Baoping, 2021. "Multicellular LSTM-based deep learning model for aero-engine remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    5. Chen, Jinglong & Jing, Hongjie & Chang, Yuanhong & Liu, Qian, 2019. "Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 372-382.
    6. Shi, Zunya & Chehade, Abdallah, 2021. "A dual-LSTM framework combining change point detection and remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    7. Li, Tianfu & Zhao, Zhibin & Sun, Chuang & Yan, Ruqiang & Chen, Xuefeng, 2021. "Hierarchical attention graph convolutional network to fuse multi-sensor signals for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    8. Chang, Yuanhong & Chen, Jinglong & Qu, Cheng & Pan, Tongyang, 2020. "Intelligent fault diagnosis of Wind Turbines via a Deep Learning Network Using Parallel Convolution Layers with Multi-Scale Kernels," Renewable Energy, Elsevier, vol. 153(C), pages 205-213.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Dingliang & Cai, Wei & Yu, Hangjun & Wu, Fei & Qin, Yi, 2023. "A novel transfer gear life prediction method by the cross-condition health indicator and nested hierarchical binary-valued network," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    2. Liu, Yulang & Chen, Jinglong & Wang, Tiantian & Li, Aimin & Pan, Tongyang, 2023. "A variational transformer for predicting turbopump bearing condition under diverse degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    3. Li, Pengyu & Wang, Xiufang & Jiang, Chunlei & Bi, Hongbo & Liu, Yongzhi & Yan, Wendi & Zhang, Cong & Dong, Taiji & Sun, Yu, 2024. "Advanced transformer model for simultaneous leakage aperture recognition and localization in gas pipelines," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    4. Chen, Dingliang & Qin, Yi & Qian, Quan & Wang, Yi & Liu, Fuqiang, 2023. "Transfer life prediction of gears by cross-domain health indicator construction and multi-hierarchical long-term memory augmented network," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    5. Cao, Lixiao & Zhang, Hongyu & Meng, Zong & Wang, Xueping, 2023. "A parallel GRU with dual-stage attention mechanism model integrating uncertainty quantification for probabilistic RUL prediction of wind turbine bearings," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    6. Zhang, Jiusi & Li, Xiang & Tian, Jilun & Luo, Hao & Yin, Shen, 2023. "An integrated multi-head dual sparse self-attention network for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 233(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Yuxuan & Su, Huai & Zio, Enrico & Peng, Shiliang & Fan, Lin & Yang, Zhaoming & Yang, Zhe & Zhang, Jinjun, 2023. "A systematic method of remaining useful life estimation based on physics-informed graph neural networks with multisensor data," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    2. Li, Yuanfu & Chen, Yifan & Shao, Haonan & Zhang, Huisheng, 2023. "A novel dual attention mechanism combined with knowledge for remaining useful life prediction based on gated recurrent units," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    3. Huang, Zhifu & Yang, Yang & Hu, Yawei & Ding, Xiang & Li, Xuanlin & Liu, Yongbin, 2023. "Attention-augmented recalibrated and compensatory network for machine remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    4. Cao, Lixiao & Zhang, Hongyu & Meng, Zong & Wang, Xueping, 2023. "A parallel GRU with dual-stage attention mechanism model integrating uncertainty quantification for probabilistic RUL prediction of wind turbine bearings," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    5. Zhang, Jiusi & Jiang, Yuchen & Wu, Shimeng & Li, Xiang & Luo, Hao & Yin, Shen, 2022. "Prediction of remaining useful life based on bidirectional gated recurrent unit with temporal self-attention mechanism," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    6. Chen, Dingliang & Qin, Yi & Qian, Quan & Wang, Yi & Liu, Fuqiang, 2023. "Transfer life prediction of gears by cross-domain health indicator construction and multi-hierarchical long-term memory augmented network," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    7. Xiang, Sheng & Qin, Yi & Luo, Jun & Pu, Huayan & Tang, Baoping, 2021. "Multicellular LSTM-based deep learning model for aero-engine remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    8. Zhu, Rong & Chen, Yuan & Peng, Weiwen & Ye, Zhi-Sheng, 2022. "Bayesian deep-learning for RUL prediction: An active learning perspective," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    9. Ardeshiri, Reza Rouhi & Liu, Ming & Ma, Chengbin, 2022. "Multivariate stacked bidirectional long short term memory for lithium-ion battery health management," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    10. Xiao, Lei & Tang, Junxuan & Zhang, Xinghui & Bechhoefer, Eric & Ding, Siyi, 2021. "Remaining useful life prediction based on intentional noise injection and feature reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    11. Liu, Lu & Song, Xiao & Zhou, Zhetao, 2022. "Aircraft engine remaining useful life estimation via a double attention-based data-driven architecture," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    12. Costa, Nahuel & Sánchez, Luciano, 2022. "Variational encoding approach for interpretable assessment of remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    13. Wang, Chu & Dou, Manfeng & Li, Zhongliang & Outbib, Rachid & Zhao, Dongdong & Zuo, Jian & Wang, Yuanlin & Liang, Bin & Wang, Peng, 2023. "Data-driven prognostics based on time-frequency analysis and symbolic recurrent neural network for fuel cells under dynamic load," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    14. Zhu, Yongmeng & Wu, Jiechang & Wu, Jun & Liu, Shuyong, 2022. "Dimensionality reduce-based for remaining useful life prediction of machining tools with multisensor fusion," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    15. Xu, Dan & Xiao, Xiaoqi & Liu, Jie & Sui, Shaobo, 2023. "Spatio-temporal degradation modeling and remaining useful life prediction under multiple operating conditions based on attention mechanism and deep learning," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    16. Yang, Ningning & Wang, Zhijian & Cai, Wenan & Li, Yanfeng, 2023. "Data Regeneration Based on Multiple Degradation Processes for Remaining Useful Life Estimation," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    17. Youdao Wang & Yifan Zhao, 2022. "Multi-Scale Remaining Useful Life Prediction Using Long Short-Term Memory," Sustainability, MDPI, vol. 14(23), pages 1-19, November.
    18. Prakash, Om & Samantaray, Arun Kumar, 2021. "Prognosis of Dynamical System Components with Varying Degradation Patterns using model–data–fusion," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    19. Yan, Jianhai & He, Zhen & He, Shuguang, 2023. "Multitask learning of health state assessment and remaining useful life prediction for sensor-equipped machines," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    20. Fan, Linchuan & Chai, Yi & Chen, Xiaolong, 2022. "Trend attention fully convolutional network for remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:226:y:2022:i:c:s095183202200326x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.