IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v242y2024ics0951832023006622.html
   My bibliography  Save this article

Knowledge enhanced ensemble method for remaining useful life prediction under variable working conditions

Author

Listed:
  • Li, Yuan
  • Li, Jingwei
  • Wang, Huanjie
  • Liu, Chengbao
  • Tan, Jie

Abstract

Remaining useful life (RUL) prediction is essential in enhancing the safety and reliability of rotating machinery. Deep learning techniques have been extensively researched and demonstrated promising results in RUL prediction tasks. But most existing models are designed for machinery equipment in a specific condition. In this case, a novel prediction method, knowledge-enhanced convolutional Transformer ensemble model (KE-CTEM), is proposed in this study. First, a feature extraction neural network (FENN) is introduced to extract features and transfer the working conditions information of existing datasets as knowledge to downstream RUL prediction tasks. Then, a convolutional Transformer model is leveraged to capture the input data degradation patterns and predict RUL values. Finally, knowledge-enhanced strategy and ensemble strategy are proposed to enhance the robustness of the model and improve the prediction accuracy.

Suggested Citation

  • Li, Yuan & Li, Jingwei & Wang, Huanjie & Liu, Chengbao & Tan, Jie, 2024. "Knowledge enhanced ensemble method for remaining useful life prediction under variable working conditions," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023006622
    DOI: 10.1016/j.ress.2023.109748
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023006622
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109748?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023006622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.