IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v248y2024ics0951832024002618.html
   My bibliography  Save this article

A Bayesian adversarial probsparse Transformer model for long-term remaining useful life prediction

Author

Listed:
  • Cheng, Yongbo
  • Qv, Junheng
  • Feng, Ke
  • Han, Te

Abstract

Long-term remaining useful life (RUL) prediction is essential for the maintenance of safety-crucial engineering assets. Deep learning (DL) models, especially Transformer-based models have achieved outstanding performance in long-term RUL prediction. However, existing Transformer models neglect the impact of discrepancy loss in model training. The accumulation of the discrepancy loss during the inference will hamper the generalization of prediction model, resulting in an overfitting problem. To address the problem, this paper proposes a Bayesian Adversarial Probsparse Transformer (BAPT) model for long-term RUL prediction. Firstly, the adversarial learning method is leveraged to mitigate the impact of accumulated discrepancy loss caused by varying working conditions in long-term prediction, thus diminishing the error accumulation. Secondly, the Probsparse multi-head attention is adopted to enhance the efficiency of feature extraction. The Probsparse multi-head attention focuses on the significant degradation features in long time-series to reduce the computation complexity. Lastly, the Bayesian neural network is introduced to quantify the uncertainty in RUL prediction. The effectiveness of the proposed model is verified using two commercial aircraft turbofan engine datasets. The results indicate that BAPT model for long-term RUL prediction demonstrates better performance than the existing state-of-the-art models.

Suggested Citation

  • Cheng, Yongbo & Qv, Junheng & Feng, Ke & Han, Te, 2024. "A Bayesian adversarial probsparse Transformer model for long-term remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
  • Handle: RePEc:eee:reensy:v:248:y:2024:i:c:s0951832024002618
    DOI: 10.1016/j.ress.2024.110188
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024002618
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110188?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:248:y:2024:i:c:s0951832024002618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.