IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v260y2025ics0951832025002200.html
   My bibliography  Save this article

Confidence-aware quantile Transformer for reliable degradation prediction of battery energy storage systems

Author

Listed:
  • Wu, Rui
  • Tian, Jinpeng
  • Yao, Jiachi
  • Han, Te
  • Hu, Chunsheng

Abstract

Battery energy storage systems (BESS) play a vital role in grid stabilization, integrating renewable energy, and enhancing resilience through efficient energy storage and distribution. Precisely predicting the BESS degradation status is paramount for timely maintenance, ensuring safety, and upholding reliability. The degradation process of batteries in BESS involves complex chemical reactions and physical changes, compounded by various uncertain factors such as diverse battery usage conditions. To address this challenge, the quantile Transformer (Q-Transformer) method is proposed, which can predict the degradation of batteries within intervals, thereby enhancing the reliability of predictions. Firstly, the voltage and current data of lithium-ion batteries in BESS are converted into capacity increment features through incremental capacity analysis. Subsequently, the constructed Q-Transformer model is trained using these capacity increment features. Finally, the trained Q-Transformer model is employed to predict the capacity of lithium-ion batteries in BESS. The effectiveness of the proposed Q-Transformer method is validated and analyzed using two lithium-ion battery datasets, NASA and CALCE. The experimental results indicate that the proposed Q-Transformer method exhibits superior predictive performance than other popular methods. The errors in terms of RMSE, MAPE, and MD-MAPE are mostly within about 5%. The proposed Q-Transformer method shows promising potential for extensive application in BESS.

Suggested Citation

  • Wu, Rui & Tian, Jinpeng & Yao, Jiachi & Han, Te & Hu, Chunsheng, 2025. "Confidence-aware quantile Transformer for reliable degradation prediction of battery energy storage systems," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002200
    DOI: 10.1016/j.ress.2025.111019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025002200
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.111019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Yongbo & Qv, Junheng & Feng, Ke & Han, Te, 2024. "A Bayesian adversarial probsparse Transformer model for long-term remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    2. Yao, Jiachi & Han, Te, 2023. "Data-driven lithium-ion batteries capacity estimation based on deep transfer learning using partial segment of charging/discharging data," Energy, Elsevier, vol. 271(C).
    3. Fujin Wang & Zhi Zhai & Zhibin Zhao & Yi Di & Xuefeng Chen, 2024. "Physics-informed neural network for lithium-ion battery degradation stable modeling and prognosis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Khaleghi, Sahar & Hosen, Md Sazzad & Van Mierlo, Joeri & Berecibar, Maitane, 2024. "Towards machine-learning driven prognostics and health management of Li-ion batteries. A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    5. Henni, Sarah & Becker, Jonas & Staudt, Philipp & vom Scheidt, Frederik & Weinhardt, Christof, 2022. "Industrial peak shaving with battery storage using a probabilistic forecasting approach: Economic evaluation of risk attitude," Applied Energy, Elsevier, vol. 327(C).
    6. Wang, Fujin & Wu, Ziqian & Zhao, Zhibin & Zhai, Zhi & Wang, Chenxi & Chen, Xuefeng, 2024. "Physical knowledge guided state of health estimation of lithium-ion battery with limited segment data," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    7. Yao, Jiachi & Chang, Zhonghao & Han, Te & Tian, Jingpeng, 2024. "Semi-supervised adversarial deep learning for capacity estimation of battery energy storage systems," Energy, Elsevier, vol. 294(C).
    8. Meng, Huixing & Geng, Mengyao & Han, Te, 2023. "Long short-term memory network with Bayesian optimization for health prognostics of lithium-ion batteries based on partial incremental capacity analysis," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    9. Jia, Chenyu & Tian, Yukai & Shi, Yuanhao & Jia, Jianfang & Wen, Jie & Zeng, Jianchao, 2023. "State of health prediction of lithium-ion batteries based on bidirectional gated recurrent unit and transformer," Energy, Elsevier, vol. 285(C).
    10. Jiahuan Lu & Rui Xiong & Jinpeng Tian & Chenxu Wang & Fengchun Sun, 2023. "Deep learning to estimate lithium-ion battery state of health without additional degradation experiments," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Xie, Qilong & Liu, Rongchuan & Huang, Jihao & Su, Jianhui, 2023. "Residual life prediction of lithium-ion batteries based on data preprocessing and a priori knowledge-assisted CNN-LSTM," Energy, Elsevier, vol. 281(C).
    12. Gu, Xinyu & See, K.W. & Li, Penghua & Shan, Kangheng & Wang, Yunpeng & Zhao, Liang & Lim, Kai Chin & Zhang, Neng, 2023. "A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model," Energy, Elsevier, vol. 262(PB).
    13. T. M. M. Heenan & I. Mombrini & A. Llewellyn & S. Checchia & C. Tan & M. J. Johnson & A. Jnawali & G. Garbarino & R. Jervis & D. J. L. Brett & M. Michiel & P. R. Shearing, 2023. "Mapping internal temperatures during high-rate battery applications," Nature, Nature, vol. 617(7961), pages 507-512, May.
    14. Duan, Chaoqun & Deng, Tongxin & Song, Lei & Wang, Min & Sheng, Bo, 2023. "An adaptive reliability-based maintenance policy for mechanical systems under variable environments," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    15. Li, Jingkui & Liu, Xiaona & Lu, Yuze & Wang, Hanzheng, 2024. "Reliability analysis on energy storage system combining GO-FLOW methodology with GERT network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    16. Xiong, Rui & Pan, Yue & Shen, Weixiang & Li, Hailong & Sun, Fengchun, 2020. "Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiaopeng & Zhao, Minghang & Zhong, Shisheng & Li, Junfu & Fu, Song & Yan, Zhiqi, 2024. "BMSFormer: An efficient deep learning model for online state-of-health estimation of lithium-ion batteries under high-frequency early SOC data with strong correlated single health indicator," Energy, Elsevier, vol. 313(C).
    2. Wang, Huan & Li, Yan-Fu & Zhang, Ying, 2023. "Bioinspired spiking spatiotemporal attention framework for lithium-ion batteries state-of-health estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Soo, Yin-Yi & Wang, Yujie & Xiang, Haoxiang & Chen, Zonghai, 2024. "Machine learning based battery pack health prediction using real-world data," Energy, Elsevier, vol. 308(C).
    4. Liang, Pengfei & Tian, Jiaye & Wang, Suiyan & Yuan, Xiaoming, 2024. "Multi-source information joint transfer diagnosis for rolling bearing with unknown faults via wavelet transform and an improved domain adaptation network," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    5. Liu, Jiale & Wang, Huan, 2024. "A brain-inspired energy-efficient Wide Spiking Residual Attention Framework for intelligent fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    6. Dou, Bowen & Hou, Shujuan & Li, Hai & Zhao, Yanpeng & Fan, Yue & Sun, Lei & Chen, Hao-sen, 2025. "Cross-domain state of health estimation for lithium-ion battery based on latent space consistency using few-unlabeled data," Energy, Elsevier, vol. 320(C).
    7. Chen, Kui & Luo, Yang & Long, Zhou & Li, Yang & Nie, Guangbo & Liu, Kai & Xin, Dongli & Gao, Guoqiang & Wu, Guangning, 2025. "Big data-driven prognostics and health management of lithium-ion batteries:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 214(C).
    8. Wang, Fujin & Wu, Ziqian & Zhao, Zhibin & Zhai, Zhi & Wang, Chenxi & Chen, Xuefeng, 2024. "Physical knowledge guided state of health estimation of lithium-ion battery with limited segment data," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    9. Chen, Si-Zhe & Liu, Jing & Yuan, Haoliang & Tao, Yibin & Xu, Fangyuan & Yang, Ling, 2025. "AM-MFF: A multi-feature fusion framework based on attention mechanism for robust and interpretable lithium-ion battery state of health estimation," Applied Energy, Elsevier, vol. 381(C).
    10. Dong, Manman & Cheng, Yongbo & Wan, Liangqi, 2024. "A new adaptive multi-kernel relevance vector regression for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    11. Xiong, Ran & Wang, Shunli & Huang, Qi & Yu, Chunmei & Fernandez, Carlos & Xiao, Wei & Jia, Jun & Guerrero, Josep M., 2024. "Improved cooperative competitive particle swarm optimization and nonlinear coefficient temperature decreasing simulated annealing-back propagation methods for state of health estimation of energy stor," Energy, Elsevier, vol. 292(C).
    12. Sun, Rongli & Chen, Junsheng & Li, Benchuan & Piao, Changhao, 2025. "State of health estimation for Lithium-ion batteries based on novel feature extraction and BiGRU-Attention model," Energy, Elsevier, vol. 319(C).
    13. Zhang, Ran & Ji, ChunHui & Zhou, Xing & Liu, Tianyu & Jin, Guang & Pan, Zhengqiang & Liu, Yajie, 2024. "Capacity estimation of lithium-ion batteries with uncertainty quantification based on temporal convolutional network and Gaussian process regression," Energy, Elsevier, vol. 297(C).
    14. Liu, Donglei & Wang, Shunli & Fan, Yongcun & Fernandez, Carlos & Blaabjerg, Frede, 2024. "An optimized multi-segment long short-term memory network strategy for power lithium-ion battery state of charge estimation adaptive wide temperatures," Energy, Elsevier, vol. 304(C).
    15. Zhao, Xiaoyu & Wang, Zuolu & Miao, Haiyan & Yang, Wenxian & Gu, Fengshou & Ball, Andrew D., 2024. "A label-free battery state of health estimation method based on adversarial multi-domain adaptation network and relaxation voltage," Energy, Elsevier, vol. 308(C).
    16. Chen, Guanxu & Yang, Fangfang & Peng, Weiwen & Fan, Yuqian & Lyu, Ximin, 2024. "State-of-health estimation for lithium-ion batteries based on Kullback–Leibler divergence and a retentive network," Applied Energy, Elsevier, vol. 376(PB).
    17. Sun, Wenjie & Wu, Chengke & Xie, Chengde & Wang, Xikang & Guo, Yuanjun & Tang, Yongbing & Zhang, Yanhui & Li, Kang & Du, Guanhao & Yang, Zhile & Yao, Wenjiao, 2025. "Fine-tuning enables state of health estimation for lithium-ion batteries via a time series foundation model," Energy, Elsevier, vol. 318(C).
    18. Zhang, Zhen & Zhu, Yuhao & Zhang, Qi & Cui, Naxin & Shang, Yunlong, 2024. "Multi-cycle charging information guided state of health estimation for lithium-ion batteries based on pre-trained large language model," Energy, Elsevier, vol. 313(C).
    19. Wang, Haoyu & Li, Chuanjiang & Ding, Peng & Li, Shaobo & Li, Tandong & Liu, Chenyu & Zhang, Xiangjie & Hong, Zejian, 2024. "A novel transformer-based few-shot learning method for intelligent fault diagnosis with noisy labels under varying working conditions," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    20. Chenyuan Liu & Heng Li & Kexin Li & Yue Wu & Baogang Lv, 2025. "Deep Learning for State of Health Estimation of Lithium-Ion Batteries in Electric Vehicles: A Systematic Review," Energies, MDPI, vol. 18(6), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.