Fine-tuning enables state of health estimation for lithium-ion batteries via a time series foundation model
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2024.134177
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Olivares, Kin G. & Challu, Cristian & Marcjasz, Grzegorz & Weron, Rafał & Dubrawski, Artur, 2023.
"Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 884-900.
- Kin G. Olivares & Cristian Challu & Grzegorz Marcjasz & Rafal Weron & Artur Dubrawski, 2021. "Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx," WORking papers in Management Science (WORMS) WORMS/21/07, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
- Yang, Bo & Qian, Yucun & Li, Qiang & Chen, Qian & Wu, Jiyang & Luo, Enbo & Xie, Rui & Zheng, Ruyi & Yan, Yunfeng & Su, Shi & Wang, Jingbo, 2024. "Critical summary and perspectives on state-of-health of lithium-ion battery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
- Dong, Guangzhong & Wei, Jingwen & Zhang, Chenbin & Chen, Zonghai, 2016. "Online state of charge estimation and open circuit voltage hysteresis modeling of LiFePO4 battery using invariant imbedding method," Applied Energy, Elsevier, vol. 162(C), pages 163-171.
- Zhang, Chaolong & Luo, Laijin & Yang, Zhong & Du, Bolun & Zhou, Ziheng & Wu, Ji & Chen, Liping, 2024. "Flexible method for estimating the state of health of lithium-ion batteries using partial charging segments," Energy, Elsevier, vol. 295(C).
- Jiangong Zhu & Yixiu Wang & Yuan Huang & R. Bhushan Gopaluni & Yankai Cao & Michael Heere & Martin J. Mühlbauer & Liuda Mereacre & Haifeng Dai & Xinhua Liu & Anatoliy Senyshyn & Xuezhe Wei & Michael K, 2022. "Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Lim, Bryan & Arık, Sercan Ö. & Loeff, Nicolas & Pfister, Tomas, 2021. "Temporal Fusion Transformers for interpretable multi-horizon time series forecasting," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1748-1764.
- Li, J. & Adewuyi, K. & Lotfi, N. & Landers, R.G. & Park, J., 2018. "A single particle model with chemical/mechanical degradation physics for lithium ion battery State of Health (SOH) estimation," Applied Energy, Elsevier, vol. 212(C), pages 1178-1190.
- Zhang, Hao & Gao, Jingyi & Kang, Le & Zhang, Yi & Wang, Licheng & Wang, Kai, 2023. "State of health estimation of lithium-ion batteries based on modified flower pollination algorithm-temporal convolutional network," Energy, Elsevier, vol. 283(C).
- Zhou, Yong & Dong, Guangzhong & Tan, Qianqian & Han, Xueyuan & Chen, Chunlin & Wei, Jingwen, 2023. "State of health estimation for lithium-ion batteries using geometric impedance spectrum features and recurrent Gaussian process regression," Energy, Elsevier, vol. 262(PB).
- Jiahuan Lu & Rui Xiong & Jinpeng Tian & Chenxu Wang & Fengchun Sun, 2023. "Deep learning to estimate lithium-ion battery state of health without additional degradation experiments," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Qian, Cheng & Xu, Binghui & Xia, Quan & Ren, Yi & Sun, Bo & Wang, Zili, 2023. "SOH prediction for Lithium-Ion batteries by using historical state and future load information with an AM-seq2seq model," Applied Energy, Elsevier, vol. 336(C).
- Ye, Jinhua & Xie, Quan & Lin, Mingqiang & Wu, Ji, 2024. "A method for estimating the state of health of lithium-ion batteries based on physics-informed neural network," Energy, Elsevier, vol. 294(C).
- Gu, Xinyu & See, K.W. & Li, Penghua & Shan, Kangheng & Wang, Yunpeng & Zhao, Liang & Lim, Kai Chin & Zhang, Neng, 2023. "A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model," Energy, Elsevier, vol. 262(PB).
- Guangheng Qi & Ning Ma & Kai Wang, 2024. "Predicting the Remaining Useful Life of Supercapacitors under Different Operating Conditions," Energies, MDPI, vol. 17(11), pages 1-16, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li, Yang & Gao, Guoqiang & Chen, Kui & He, Shuhang & Liu, Kai & Xin, Dongli & Luo, Yang & Long, Zhou & Wu, Guangning, 2025. "State-of-health prediction of lithium-ion batteries using feature fusion and a hybrid neural network model," Energy, Elsevier, vol. 319(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Kui & Luo, Yang & Long, Zhou & Li, Yang & Nie, Guangbo & Liu, Kai & Xin, Dongli & Gao, Guoqiang & Wu, Guangning, 2025. "Big data-driven prognostics and health management of lithium-ion batteries:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 214(C).
- Wang, Tianyu & Ma, Zhongjing & Zou, Suli & Chen, Zhan & Wang, Peng, 2024. "Lithium-ion battery state-of-health estimation: A self-supervised framework incorporating weak labels," Applied Energy, Elsevier, vol. 355(C).
- Dou, Bowen & Hou, Shujuan & Li, Hai & Zhao, Yanpeng & Fan, Yue & Sun, Lei & Chen, Hao-sen, 2025. "Cross-domain state of health estimation for lithium-ion battery based on latent space consistency using few-unlabeled data," Energy, Elsevier, vol. 320(C).
- Wang, Tong & Wu, Yan & Zhu, Keming & Cen, Jianmeng & Wang, Shaohong & Huang, Yuqi, 2025. "Deep learning and polarization equilibrium based state of health estimation for lithium-ion battery using partial charging data," Energy, Elsevier, vol. 317(C).
- Lin, Chunsong & Tuo, Xianguo & Wu, Longxing & Zhang, Guiyu & Lyu, Zhiqiang & Zeng, Xiangling, 2025. "Physics-informed machine learning for accurate SOH estimation of lithium-ion batteries considering various temperatures and operating conditions," Energy, Elsevier, vol. 318(C).
- Li, Xiaopeng & Zhao, Minghang & Zhong, Shisheng & Li, Junfu & Fu, Song & Yan, Zhiqi, 2024. "BMSFormer: An efficient deep learning model for online state-of-health estimation of lithium-ion batteries under high-frequency early SOC data with strong correlated single health indicator," Energy, Elsevier, vol. 313(C).
- Zhao, Jingyuan & Wang, Zhenghong & Wu, Yuyan & Burke, Andrew F., 2025. "Predictive pretrained transformer (PPT) for real-time battery health diagnostics," Applied Energy, Elsevier, vol. 377(PD).
- Tian, Yong & Dong, Qianyuan & Tian, Jindong & Li, Xiaoyu & Li, Guang & Mehran, Kamyar, 2023. "Capacity estimation of lithium-ion batteries based on optimized charging voltage section and virtual sample generation," Applied Energy, Elsevier, vol. 332(C).
- Lyu, Guangzheng & Zhang, Heng & Miao, Qiang, 2023. "An interpretable state of health estimation method for lithium-ion batteries based on multi-category and multi-stage features," Energy, Elsevier, vol. 283(C).
- Chen, Si-Zhe & Liu, Jing & Yuan, Haoliang & Tao, Yibin & Xu, Fangyuan & Yang, Ling, 2025. "AM-MFF: A multi-feature fusion framework based on attention mechanism for robust and interpretable lithium-ion battery state of health estimation," Applied Energy, Elsevier, vol. 381(C).
- Xiong, Ran & Wang, Shunli & Huang, Qi & Yu, Chunmei & Fernandez, Carlos & Xiao, Wei & Jia, Jun & Guerrero, Josep M., 2024. "Improved cooperative competitive particle swarm optimization and nonlinear coefficient temperature decreasing simulated annealing-back propagation methods for state of health estimation of energy stor," Energy, Elsevier, vol. 292(C).
- Liu, Chenghao & Deng, Zhongwei & Zhang, Xiaohong & Bao, Huanhuan & Cheng, Duanqian, 2024. "Battery state of health estimation across electrochemistry and working conditions based on domain adaptation," Energy, Elsevier, vol. 297(C).
- Soo, Yin-Yi & Wang, Yujie & Xiang, Haoxiang & Chen, Zonghai, 2024. "Machine learning based battery pack health prediction using real-world data," Energy, Elsevier, vol. 308(C).
- Zhang, Ran & Ji, ChunHui & Zhou, Xing & Liu, Tianyu & Jin, Guang & Pan, Zhengqiang & Liu, Yajie, 2024. "Capacity estimation of lithium-ion batteries with uncertainty quantification based on temporal convolutional network and Gaussian process regression," Energy, Elsevier, vol. 297(C).
- Tao, Junjie & Wang, Shunli & Cao, Wen & Cui, Yixiu & Fernandez, Carlos & Guerrero, Josep M., 2024. "Innovative multiscale fusion – Antinoise extended long short-term memory neural network modeling for high precision state of health estimation of lithium-ion batteries," Energy, Elsevier, vol. 312(C).
- Zhao, Xiaoyu & Wang, Zuolu & Miao, Haiyan & Yang, Wenxian & Gu, Fengshou & Ball, Andrew D., 2024. "A label-free battery state of health estimation method based on adversarial multi-domain adaptation network and relaxation voltage," Energy, Elsevier, vol. 308(C).
- Zhang, Zhen & Zhu, Yuhao & Zhang, Qi & Cui, Naxin & Shang, Yunlong, 2024. "Multi-cycle charging information guided state of health estimation for lithium-ion batteries based on pre-trained large language model," Energy, Elsevier, vol. 313(C).
- Zhang, Zhen & Wang, Yanyu & Ruan, Xingxin & Zhang, Xiangyu, 2025. "Lithium-ion batteries lifetime early prediction using domain adversarial learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
- Zhang, Zhen & Zhu, Yuhao & Gong, Yichang & Wang, Teng & Cui, Naxin & Shang, Yunlong, 2025. "Insight into the whole from the part: Redefined state of health for lithium-ion batteries based on optimal charging fragment search," Energy, Elsevier, vol. 320(C).
- Feng, Xinhong & Zhang, Yongzhi & Xiong, Rui & Wang, Chun, 2024. "Comprehensive performance comparison among different types of features in data-driven battery state of health estimation," Applied Energy, Elsevier, vol. 369(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544224039550. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.