IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223024611.html
   My bibliography  Save this article

An interpretable state of health estimation method for lithium-ion batteries based on multi-category and multi-stage features

Author

Listed:
  • Lyu, Guangzheng
  • Zhang, Heng
  • Miao, Qiang

Abstract

Accurate state of health (SOH) estimation of lithium-ion batteries is essential for quality control and improving safety and efficiency of electric vehicles and energy storage systems. Due to inadequate consideration of different categories of measurement data and stages of battery working in constructing degradation features, current SOH estimation methods are limited in accuracy and fail to facilitate development of specific battery management strategies. To address these issues, this paper proposes a novel SOH estimation method for lithium-ion batteries based on multi-category and multi-stage (MC-MS) features and an input optimization interpretable multi-variable long short-term memory (IO-IMV-LSTM) model. First, a MC-MS degradation feature construction scheme is presented based on working principles and degradation mechanism of lithium-ion batteries. Then, an improved interpretable estimation model called IO-IMV-LSTM is introduced, which uses feature importance to identify the most effective features and optimize model input. Finally, influence of battery measurement data from different categories and working stages on SOH estimation results is analyzed, and the findings can be used to optimize battery utilization and maintenance strategies. A public dataset together with degradation dataset of our testbed is used for validation experiments. Results show that the MC-MS features are superior to existing features and the performance of the IO-IMV-LSTM model is significantly improved through input optimization. The proposed method showcases remarkable improvements and advantages compared with state-of-art methods. Specifically, the proposed SOH estimation method achieves satisfactory performance on four evaluation indicators: mean absolute error, mean absolute percentage error, root mean square error, and R-square, with average values of 0.20%, 0.22%, 0.24%, and 99.34%, respectively.

Suggested Citation

  • Lyu, Guangzheng & Zhang, Heng & Miao, Qiang, 2023. "An interpretable state of health estimation method for lithium-ion batteries based on multi-category and multi-stage features," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024611
    DOI: 10.1016/j.energy.2023.129067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223024611
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.