IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v188y2023ics1364032123005853.html
   My bibliography  Save this article

Bioinspired spiking spatiotemporal attention framework for lithium-ion batteries state-of-health estimation

Author

Listed:
  • Wang, Huan
  • Li, Yan-Fu
  • Zhang, Ying

Abstract

State-of-health (SOH) estimation of batteries is crucial for ensuring the safety of energy storage systems. Prediction models based on external information (current, voltage, etc.) and artificial neural networks (ANN) are effective solutions. However, external information easily interferes, and the ANN-based model has data dependence, high energy consumption, and insufficient cognitive ability. This motivates us to utilize precise battery physical and chemical degradation information and brain-inspired spiking neural networks (SNNs) for accurate SOH estimation. Therefore, this study proposes a bioinspired spiking spatiotemporal attention neural network (SSA-Net) framework for battery health state monitoring by utilizing full-life-cycle electrochemical impedance spectroscopy (EIS). SSA-Net perfectly models brain neurons' information transmission mechanism and neuron dynamics, thereby endowing it with efficient spatiotemporal feature processing capabilities and low power consumption. Based on the designed spiking residual architecture, SSA-Net constructs a deep spiking information encoding framework achieving high gradient transfer efficiency. More importantly, this study proposes a novel SNN-based spiking spatiotemporal attention module, which realizes the enhancement of useful spiking features and discards worthless information through an adaptive spiking feature selection mechanism. Experimental results show that SSA-Net effectively extracts electrochemical features associated with battery degradation, facilitating precise modeling of the nonlinear relationship between EIS data and SOH and achieving competitive performance.

Suggested Citation

  • Wang, Huan & Li, Yan-Fu & Zhang, Ying, 2023. "Bioinspired spiking spatiotemporal attention framework for lithium-ion batteries state-of-health estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:rensus:v:188:y:2023:i:c:s1364032123005853
    DOI: 10.1016/j.rser.2023.113728
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123005853
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113728?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jing Pei & Lei Deng & Sen Song & Mingguo Zhao & Youhui Zhang & Shuang Wu & Guanrui Wang & Zhe Zou & Zhenzhi Wu & Wei He & Feng Chen & Ning Deng & Si Wu & Yu Wang & Yujie Wu & Zheyu Yang & Cheng Ma & G, 2019. "Towards artificial general intelligence with hybrid Tianjic chip architecture," Nature, Nature, vol. 572(7767), pages 106-111, August.
    2. Cheng, Gong & Wang, Xinzhi & He, Yurong, 2021. "Remaining useful life and state of health prediction for lithium batteries based on empirical mode decomposition and a long and short memory neural network," Energy, Elsevier, vol. 232(C).
    3. Bian, Chong & He, Huoliang & Yang, Shunkun, 2020. "Stacked bidirectional long short-term memory networks for state-of-charge estimation of lithium-ion batteries," Energy, Elsevier, vol. 191(C).
    4. Yunwei Zhang & Qiaochu Tang & Yao Zhang & Jiabin Wang & Ulrich Stimming & Alpha A. Lee, 2020. "Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    5. Ding, Pan & Liu, Xiaojuan & Li, Huiqin & Huang, Zequan & Zhang, Ke & Shao, Long & Abedinia, Oveis, 2021. "Useful life prediction based on wavelet packet decomposition and two-dimensional convolutional neural network for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    6. Yao, Jiachi & Han, Te, 2023. "Data-driven lithium-ion batteries capacity estimation based on deep transfer learning using partial segment of charging/discharging data," Energy, Elsevier, vol. 271(C).
    7. Li, Penghua & Zhang, Zijian & Grosu, Radu & Deng, Zhongwei & Hou, Jie & Rong, Yujun & Wu, Rui, 2022. "An end-to-end neural network framework for state-of-health estimation and remaining useful life prediction of electric vehicle lithium batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    8. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    9. Wang, Huan & Li, Yan-Fu, 2023. "Bioinspired membrane learnable spiking neural network for autonomous vehicle sensors fault diagnosis under open environments," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    10. Pan, Haihong & Lü, Zhiqiang & Wang, Huimin & Wei, Haiyan & Chen, Lin, 2018. "Novel battery state-of-health online estimation method using multiple health indicators and an extreme learning machine," Energy, Elsevier, vol. 160(C), pages 466-477.
    11. Rauf, Huzaifa & Khalid, Muhammad & Arshad, Naveed, 2022. "Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    12. Meng, Huixing & Geng, Mengyao & Han, Te, 2023. "Long short-term memory network with Bayesian optimization for health prognostics of lithium-ion batteries based on partial incremental capacity analysis," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    13. Christensen, Paul A. & Anderson, Paul A. & Harper, Gavin D.J. & Lambert, Simon M. & Mrozik, Wojciech & Rajaeifar, Mohammad Ali & Wise, Malcolm S. & Heidrich, Oliver, 2021. "Risk management over the life cycle of lithium-ion batteries in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    14. Jiahuan Lu & Rui Xiong & Jinpeng Tian & Chenxu Wang & Fengchun Sun, 2023. "Deep learning to estimate lithium-ion battery state of health without additional degradation experiments," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Penelope K. Jones & Ulrich Stimming & Alpha A. Lee, 2022. "Impedance-based forecasting of lithium-ion battery performance amid uneven usage," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Zhang, Ying & Li, Yan-Fu, 2022. "Prognostics and health management of Lithium-ion battery using deep learning methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chuan & Zhang, Huahua & Ding, Ping & Yang, Shuai & Bai, Yun, 2023. "Deep feature extraction in lifetime prognostics of lithium-ion batteries: Advances, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    2. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    3. Zhang, Ying & Li, Yan-Fu, 2022. "Prognostics and health management of Lithium-ion battery using deep learning methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Lin, Yan-Hui & Ruan, Sheng-Jia & Chen, Yun-Xia & Li, Yan-Fu, 2023. "Physics-informed deep learning for lithium-ion battery diagnostics using electrochemical impedance spectroscopy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    5. Wang, Cong & Chen, Yunxia & Zhang, Qingyuan & Zhu, Jiaxiao, 2023. "Dynamic early recognition of abnormal lithium-ion batteries before capacity drops using self-adaptive quantum clustering," Applied Energy, Elsevier, vol. 336(C).
    6. Matthieu Dubarry & David Beck, 2021. "Analysis of Synthetic Voltage vs. Capacity Datasets for Big Data Li-ion Diagnosis and Prognosis," Energies, MDPI, vol. 14(9), pages 1-24, April.
    7. Ma’d El-Dalahmeh & Maher Al-Greer & Mo’ath El-Dalahmeh & Michael Short, 2020. "Time-Frequency Image Analysis and Transfer Learning for Capacity Prediction of Lithium-Ion Batteries," Energies, MDPI, vol. 13(20), pages 1-19, October.
    8. Rauf, Huzaifa & Khalid, Muhammad & Arshad, Naveed, 2022. "Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    9. Wang, Fujin & Zhao, Zhibin & Zhai, Zhi & Shang, Zuogang & Yan, Ruqiang & Chen, Xuefeng, 2023. "Explainability-driven model improvement for SOH estimation of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    10. Guo, Fei & Wu, Xiongwei & Liu, Lili & Ye, Jilei & Wang, Tao & Fu, Lijun & Wu, Yuping, 2023. "Prediction of remaining useful life and state of health of lithium batteries based on time series feature and Savitzky-Golay filter combined with gated recurrent unit neural network," Energy, Elsevier, vol. 270(C).
    11. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    12. Penelope K. Jones & Ulrich Stimming & Alpha A. Lee, 2022. "Impedance-based forecasting of lithium-ion battery performance amid uneven usage," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Lin, Mingqiang & Yan, Chenhao & Wang, Wei & Dong, Guangzhong & Meng, Jinhao & Wu, Ji, 2023. "A data-driven approach for estimating state-of-health of lithium-ion batteries considering internal resistance," Energy, Elsevier, vol. 277(C).
    14. Wei, Meng & Balaya, Palani & Ye, Min & Song, Ziyou, 2022. "Remaining useful life prediction for 18650 sodium-ion batteries based on incremental capacity analysis," Energy, Elsevier, vol. 261(PA).
    15. Kong, Jin-zhen & Yang, Fangfang & Zhang, Xi & Pan, Ershun & Peng, Zhike & Wang, Dong, 2021. "Voltage-temperature health feature extraction to improve prognostics and health management of lithium-ion batteries," Energy, Elsevier, vol. 223(C).
    16. Gu, Xinyu & See, K.W. & Li, Penghua & Shan, Kangheng & Wang, Yunpeng & Zhao, Liang & Lim, Kai Chin & Zhang, Neng, 2023. "A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model," Energy, Elsevier, vol. 262(PB).
    17. Zhu, Yuli & Jiang, Bo & Zhu, Jiangong & Wang, Xueyuan & Wang, Rong & Wei, Xuezhe & Dai, Haifeng, 2023. "Adaptive state of health estimation for lithium-ion batteries using impedance-based timescale information and ensemble learning," Energy, Elsevier, vol. 284(C).
    18. Meng, Huixing & Geng, Mengyao & Xing, Jinduo & Zio, Enrico, 2022. "A hybrid method for prognostics of lithium-ion batteries capacity considering regeneration phenomena," Energy, Elsevier, vol. 261(PB).
    19. Sui, Xin & He, Shan & Vilsen, Søren B. & Meng, Jinhao & Teodorescu, Remus & Stroe, Daniel-Ioan, 2021. "A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery," Applied Energy, Elsevier, vol. 300(C).
    20. Semeraro, Concetta & Caggiano, Mariateresa & Olabi, Abdul-Ghani & Dassisti, Michele, 2022. "Battery monitoring and prognostics optimization techniques: Challenges and opportunities," Energy, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:188:y:2023:i:c:s1364032123005853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.