IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v233y2023ics0951832023000170.html
   My bibliography  Save this article

Bioinspired membrane learnable spiking neural network for autonomous vehicle sensors fault diagnosis under open environments

Author

Listed:
  • Wang, Huan
  • Li, Yan-Fu

Abstract

Autonomous vehicles have successfully driven autonomously on urban roads, relying on numerous sensors for environmental perception and vehicle control. However, the abnormality and degradation of sensors will make vehicles face serious safety risks. Therefore, autonomous vehicles must have complete sensor fault diagnosis systems to detect anomalies and avoid accidents. Therefore, this paper explores brain-inspired spiking neural networks (SNN) for sensor fault diagnosis. Specifically, this paper proposes a brain-inspired membrane learnable residual spiking neural network (MLR-SNN) for sensor fault and health index prediction. SNN accurately simulates the dynamic mechanism of biological neurons and exhibits excellent spatiotemporal information processing potential and low power consumption while being highly biologically credible. Based on the convolution topology, this study designs a spike-residual-based SNN framework that optimizes the gradient transfer efficiency to enable deep-level spiking information encoding. In addition, membrane-learnable mechanisms are introduced to simulate the differences of neuronal membrane-related parameters in brains, which can better characterize the dynamics of neurons. The proposed MLR-SNN is validated on actual autonomous vehicle sensor datasets. Experimental results show that MLR-SNN with neural dynamics mechanism has excellent performance, and it can accurately predict fault mode and health index from multivariate sensor data under open environments.

Suggested Citation

  • Wang, Huan & Li, Yan-Fu, 2023. "Bioinspired membrane learnable spiking neural network for autonomous vehicle sensors fault diagnosis under open environments," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
  • Handle: RePEc:eee:reensy:v:233:y:2023:i:c:s0951832023000170
    DOI: 10.1016/j.ress.2023.109102
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023000170
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaushik Roy & Akhilesh Jaiswal & Priyadarshini Panda, 2019. "Towards spike-based machine intelligence with neuromorphic computing," Nature, Nature, vol. 575(7784), pages 607-617, November.
    2. Xu, Yadong & Yan, Xiaoan & Sun, Beibei & Liu, Zheng, 2022. "Global contextual residual convolutional neural networks for motor fault diagnosis under variable-speed conditions," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    3. Guan, Yang & Meng, Zong & Sun, Dengyun & Liu, Jingbo & Fan, Fengjie, 2021. "2MNet: Multi-sensor and multi-scale model toward accurate fault diagnosis of rolling bearing," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Jing Pei & Lei Deng & Sen Song & Mingguo Zhao & Youhui Zhang & Shuang Wu & Guanrui Wang & Zhe Zou & Zhenzhi Wu & Wei He & Feng Chen & Ning Deng & Si Wu & Yu Wang & Yujie Wu & Zheyu Yang & Cheng Ma & G, 2019. "Towards artificial general intelligence with hybrid Tianjic chip architecture," Nature, Nature, vol. 572(7767), pages 106-111, August.
    5. Zuo, Lin & Xu, Fengjie & Zhang, Changhua & Xiahou, Tangfan & Liu, Yu, 2022. "A multi-layer spiking neural network-based approach to bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    6. Han, Te & Li, Yan-Fu, 2022. "Out-of-distribution detection-assisted trustworthy machinery fault diagnosis approach with uncertainty-aware deep ensembles," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    7. Chen, Xi & Bose, Neil & Brito, Mario & Khan, Faisal & Thanyamanta, Bo & Zou, Ting, 2021. "A Review of Risk Analysis Research for the Operations of Autonomous Underwater Vehicles," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yeh, Wei-Chang, 2024. "Time-reliability optimization for the stochastic traveling salesman problem," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    2. Wang, Huan & Li, Yan-Fu & Zhang, Ying, 2023. "Bioinspired spiking spatiotemporal attention framework for lithium-ion batteries state-of-health estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Zhang, Wenjun & Zhang, Yingjun & Zhang, Chuang, 2024. "Research on risk assessment of maritime autonomous surface ships based on catastrophe theory," Reliability Engineering and System Safety, Elsevier, vol. 244(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yan-Fu & Wang, Huan & Sun, Muxia, 2024. "ChatGPT-like large-scale foundation models for prognostics and health management: A survey and roadmaps," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    2. Tan, Hongchuang & Xie, Suchao & Ma, Wen & Yang, Chengxing & Zheng, Shiwei, 2023. "Correlation feature distribution matching for fault diagnosis of machines," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    3. Zhu, Zuanyu & Cheng, Junsheng & Wang, Ping & Wang, Jian & Kang, Xin & Yang, Yu, 2023. "A novel fault diagnosis framework for rotating machinery with hierarchical multiscale symbolic diversity entropy and robust twin hyperdisk-based tensor machine," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    4. Zhang, Wei & Wang, Ziwei & Li, Xiang, 2023. "Blockchain-based decentralized federated transfer learning methodology for collaborative machinery fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    5. Liu, Zhao-Hua & Chen, Liang & Wei, Hua-Liang & Wu, Fa-Ming & Chen, Lei & Chen, Ya-Nan, 2023. "A Tensor-based domain alignment method for intelligent fault diagnosis of rolling bearing in rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    6. Xia, Pengcheng & Huang, Yixiang & Tao, Zhiyu & Liu, Chengliang & Liu, Jie, 2023. "A digital twin-enhanced semi-supervised framework for motor fault diagnosis based on phase-contrastive current dot pattern," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    7. Chenhao Wang & Xinyi Xu & Xiaodong Pi & Mark D. Butala & Wen Huang & Lei Yin & Wenbing Peng & Munir Ali & Srikrishna Chanakya Bodepudi & Xvsheng Qiao & Yang Xu & Wei Sun & Deren Yang, 2022. "Neuromorphic device based on silicon nanosheets," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Man Yao & Ole Richter & Guangshe Zhao & Ning Qiao & Yannan Xing & Dingheng Wang & Tianxiang Hu & Wei Fang & Tugba Demirci & Michele Marchi & Lei Deng & Tianyi Yan & Carsten Nielsen & Sadique Sheik & C, 2024. "Spike-based dynamic computing with asynchronous sensing-computing neuromorphic chip," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    9. Li, Xin & Li, Shuhua & Wei, Dong & Si, Lei & Yu, Kun & Yan, Ke, 2024. "Dynamics simulation-driven fault diagnosis of rolling bearings using security transfer support matrix machine," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    10. Zhou, Chengyu & Fang, Xiaolei, 2023. "A convex two-dimensional variable selection method for the root-cause diagnostics of product defects," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    11. Liu, Shaowei & Jiang, Hongkai & Wu, Zhenghong & Yi, Zichun & Wang, Ruixin, 2023. "Intelligent fault diagnosis of rotating machinery using a multi-source domain adaptation network with adversarial discrepancy matching," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    12. Yu, Xiaolei & Zhao, Zhibin & Zhang, Xingwu & Chen, Xuefeng & Cai, Jianbing, 2023. "Statistical identification guided open-set domain adaptation in fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    13. Chen, Jiayu. & Lin, Cuiyin & Yao, Boqing & Yang, Lechang & Ge, Hongjuan, 2023. "Intelligent fault diagnosis of rolling bearings with low-quality data: A feature significance and diversity learning method," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    14. Shao, Kaixuan & He, Yigang & Xing, Zhikai & Du, Bolun, 2023. "Detecting wind turbine anomalies using nonlinear dynamic parameters-assisted machine learning with normal samples," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    15. Wang, Huan & Li, Yan-Fu & Zhang, Ying, 2023. "Bioinspired spiking spatiotemporal attention framework for lithium-ion batteries state-of-health estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    16. Pan, Yongjun & Sun, Yu & Li, Zhixiong & Gardoni, Paolo, 2023. "Machine learning approaches to estimate suspension parameters for performance degradation assessment using accurate dynamic simulations," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    17. Li, Xinglin & Xie, Luofeng & Deng, Bo & Lu, Houhong & Zhu, Yangyang & Yin, Ming & Yin, Guofu & Gao, Wenxiang, 2024. "Deep dynamic high-order graph convolutional network for wear fault diagnosis of hydrodynamic mechanical seal," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    18. Liu, Jiale & Wang, Huan, 2024. "A brain-inspired energy-efficient Wide Spiking Residual Attention Framework for intelligent fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    19. Choi, Woo Sik & Jang, Jun Tae & Kim, Donguk & Yang, Tae Jun & Kim, Changwook & Kim, Hyungjin & Kim, Dae Hwan, 2022. "Influence of Al2O3 layer on InGaZnO memristor crossbar array for neuromorphic applications," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    20. Zhang, Qing & Tang, Lv & Xuan, Jianping & Shi, Tielin & Li, Rui, 2023. "An uncertainty relevance metric-based domain adaptation fault diagnosis method to overcome class relevance caused confusion," Reliability Engineering and System Safety, Elsevier, vol. 231(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:233:y:2023:i:c:s0951832023000170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.