IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v243y2024ics0951832023007871.html
   My bibliography  Save this article

A brain-inspired energy-efficient Wide Spiking Residual Attention Framework for intelligent fault diagnosis

Author

Listed:
  • Liu, Jiale
  • Wang, Huan

Abstract

Intelligent fault diagnosis functions as a necessary tool to prevent substantial damage to industrial products and enhance system reliability. While Artificial Neural Networks (ANNs) have been extensively studied in this context, they still face substantial challenges in resource consumption, robustness, and generalizability. To overcome these limitations, researchers have developed the third-generation neural network based on brain’s structure, namely the Spiking Neural Network (SNN), which leverages the concept of time steps and spiking signals for enhanced spatiotemporal feature processing and energy efficiency. This paper proposes the Wide Spiking Residual Grouping Attention Framework (WSRGA-FW), which incorporates the advantages of both ANN and SNN. The WSRGA-FW employs Extended Gramian Representation for signal encoding to reduce noise impact, followed by a tailored ANN with wide convolutional kernels, optimized residual structures, and Grouped Perception Generation (GPG) Layers. These augmentations increase the network’s representation and robustness, particularly in noisy environments. The backbone ANN is transformed into an SNN model, allowing deployment in portable and miniaturized devices with improved application prospects. Performance evaluations across various noisy scenarios using bearing fault datasets demonstrate that WSRGA-FW surpasses existing networks. Visualization of firing rates and energy consumption calculation contribute to the interpretability and intrinsic energy efficiency advantages of SNNs.

Suggested Citation

  • Liu, Jiale & Wang, Huan, 2024. "A brain-inspired energy-efficient Wide Spiking Residual Attention Framework for intelligent fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023007871
    DOI: 10.1016/j.ress.2023.109873
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023007871
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109873?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023007871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.