IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v251y2024ics0951832024004812.html
   My bibliography  Save this article

Neural-transformer: A brain-inspired lightweight mechanical fault diagnosis method under noise

Author

Listed:
  • Wang, Changdong
  • Tian, Bowen
  • Yang, Jingli
  • Jie, Huamin
  • Chang, Yongqi
  • Zhao, Zhenyu

Abstract

Recently, as a representative of deep learning methods, Transformers have shown great prowess in intelligent fault diagnosis, offering powerful feature extraction and modeling. However, their high computational demand and low robustness limit industrial application. Therefore, this paper proposes an innovative Neural-Transformer to realize high-precision robust fault diagnosis with low computational cost. First, a two-dimensional representation method, the frequency-slice wavelet transform (FSWT), is introduced to reflect the dynamic characteristics and frequency component variations of signals, enhancing the fault identifiability of vibration signals. Second, a separable multiscale spiking tokenizer (SMST) is developed to project time-frequency input of multiple scales to spike features with a fixed patch, ensuring consistency in feature extraction and improving the recognizability of specific frequencies in mechanical faults. Subsequently, a multi-head spatiotemporal spiking self-attention (MHSSSA) mechanism is constructed, which abandons the cumbersome multiplication operations with high computational costs and can also focus on key fine-grained time-frequency features in a global range. Experimental cases validate the advantages of the Neural-Transformer in comparison to baseline methods and state-of-art methods on one public dataset and two real-world datasets. In particular, the proposed method only consumes 0.65mJ of energy to achieve an optimal diagnostic accuracy of 93.14% on real-world dataset.

Suggested Citation

  • Wang, Changdong & Tian, Bowen & Yang, Jingli & Jie, Huamin & Chang, Yongqi & Zhao, Zhenyu, 2024. "Neural-transformer: A brain-inspired lightweight mechanical fault diagnosis method under noise," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004812
    DOI: 10.1016/j.ress.2024.110409
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024004812
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110409?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liang, Pengfei & Tian, Jiaye & Wang, Suiyan & Yuan, Xiaoming, 2024. "Multi-source information joint transfer diagnosis for rolling bearing with unknown faults via wavelet transform and an improved domain adaptation network," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    2. Liu, Jiale & Wang, Huan, 2024. "A brain-inspired energy-efficient Wide Spiking Residual Attention Framework for intelligent fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Zuo, Lin & Xu, Fengjie & Zhang, Changhua & Xiahou, Tangfan & Liu, Yu, 2022. "A multi-layer spiking neural network-based approach to bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jiale & Wang, Huan, 2024. "A brain-inspired energy-efficient Wide Spiking Residual Attention Framework for intelligent fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    2. Tan, Hongchuang & Xie, Suchao & Ma, Wen & Yang, Chengxing & Zheng, Shiwei, 2023. "Correlation feature distribution matching for fault diagnosis of machines," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    3. Tito G. Amaral & Vitor Fernão Pires & Armando Cordeiro & Daniel Foito & João F. Martins & Julia Yamnenko & Tetyana Tereschenko & Liudmyla Laikova & Ihor Fedin, 2023. "Incipient Fault Diagnosis of a Grid-Connected T-Type Multilevel Inverter Using Multilayer Perceptron and Walsh Transform," Energies, MDPI, vol. 16(6), pages 1-18, March.
    4. Zhang, Wei & Wang, Ziwei & Li, Xiang, 2023. "Blockchain-based decentralized federated transfer learning methodology for collaborative machinery fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    5. Li, Ying & Zhang, Lijie & Liang, Pengfei & Wang, Xiangfeng & Wang, Bin & Xu, Leitao, 2024. "Semi-supervised meta-path space extended graph convolution network for intelligent fault diagnosis of rotating machinery under time-varying speeds," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    6. Liu, Zhao-Hua & Chen, Liang & Wei, Hua-Liang & Wu, Fa-Ming & Chen, Lei & Chen, Ya-Nan, 2023. "A Tensor-based domain alignment method for intelligent fault diagnosis of rolling bearing in rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    7. Li, Yan-Fu & Wang, Huan & Sun, Muxia, 2024. "ChatGPT-like large-scale foundation models for prognostics and health management: A survey and roadmaps," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    8. Pang, Zhendong & Luan, Yingxin & Chen, Jiahong & Li, Teng, 2024. "ParInfoGPT: An LLM-based two-stage framework for reliability assessment of rotating machine under partial information," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    9. Liu, Jianing & Cao, Hongrui & Luo, Yang, 2023. "An information-induced fault diagnosis framework generalizing from stationary to unknown nonstationary working conditions," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    10. Li, Xin & Li, Shuhua & Wei, Dong & Si, Lei & Yu, Kun & Yan, Ke, 2024. "Dynamics simulation-driven fault diagnosis of rolling bearings using security transfer support matrix machine," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    11. Wang, Fu & Xiahou, Tangfan & Zhang, Xian & He, Pan & Yang, Taibo & Niu, Jiang & Liu, Caixue & Liu, Yu, 2024. "Convolutional preprocessing Transformer-based fault diagnosis for rectifier-filter circuits in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    12. Wang, Huan & Li, Yan-Fu, 2023. "Bioinspired membrane learnable spiking neural network for autonomous vehicle sensors fault diagnosis under open environments," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    13. Liu, Mengyu & Cheng, Zhe & Yang, Yu & Hu, Niaoqing & Yang, Yi, 2024. "Multi-target domain adaptation intelligent diagnosis method for rotating machinery based on multi-source attention mechanism and mixup feature augmentation," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    14. Liu, Shaowei & Jiang, Hongkai & Wu, Zhenghong & Yi, Zichun & Wang, Ruixin, 2023. "Intelligent fault diagnosis of rotating machinery using a multi-source domain adaptation network with adversarial discrepancy matching," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    15. Yu, Xiaolei & Zhao, Zhibin & Zhang, Xingwu & Chen, Xuefeng & Cai, Jianbing, 2023. "Statistical identification guided open-set domain adaptation in fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    16. Yin, Zhenqin & Zhuo, Yue & Ge, Zhiqiang, 2023. "Transfer adversarial attacks across industrial intelligent systems," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    17. Chen, Jiayu. & Lin, Cuiyin & Yao, Boqing & Yang, Lechang & Ge, Hongjuan, 2023. "Intelligent fault diagnosis of rolling bearings with low-quality data: A feature significance and diversity learning method," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    18. Liu, Jie & Xu, Huoyao & Peng, Xiangyu & Wang, Junlang & He, Chaoming, 2023. "Reliable composite fault diagnosis of hydraulic systems based on linear discriminant analysis and multi-output hybrid kernel extreme learning machine," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    19. Wang, Hui & Wang, Shuhui & Yang, Ronggang & Xiang, Jiawei, 2024. "An optimized dynamic model improved deep discriminative transfer learning network for fault detection in rotation vector reducers," Reliability Engineering and System Safety, Elsevier, vol. 251(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.