IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v258y2025ics0951832025001097.html
   My bibliography  Save this article

Physics-informed neural network supported wiener process for degradation modeling and reliability prediction

Author

Listed:
  • He, Zhongze
  • Wang, Shaoping
  • Shi, Jian
  • Liu, Di
  • Duan, Xiaochuan
  • Shang, Yaoxing

Abstract

Due to strong data-processing capabilities, machine learning haves been widely applied and combined with stochastic processes to quantify the inherent uncertainty in degradation modeling. These approaches typically first extract health index using machine learning methods, then model them using stochastic processes. While, the machine learning models and stochastic processes are independent of each other, making it difficult to ensure their mutual compatibility. Furthermore, actual available data is often limited, which restricts the accuracy of extracting health indexes through machine learning methods. Hence, this paper proposes a prediction method based on physics-informed neural network supported Wiener process, which includes offline modeling and online prediction stages. In the offline modeling phase, degradation path is fitted using a deep network framework, and degradation mechanics-related prior physical knowledge is embedded into the network along with the Wiener process through parametric expression. Accordingly, a compound loss function is designed to simultaneously train network parameters and process parameters. In the online prediction phase, real-time data is integrated using Bayesian inference methods to update the process parameters, ensuring the robustness of the model. The effectiveness of this method is confirmed using actual datasets, highlighting that the accuracy can be guaranteed even without path information and/or sufficient data.

Suggested Citation

  • He, Zhongze & Wang, Shaoping & Shi, Jian & Liu, Di & Duan, Xiaochuan & Shang, Yaoxing, 2025. "Physics-informed neural network supported wiener process for degradation modeling and reliability prediction," Reliability Engineering and System Safety, Elsevier, vol. 258(C).
  • Handle: RePEc:eee:reensy:v:258:y:2025:i:c:s0951832025001097
    DOI: 10.1016/j.ress.2025.110906
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025001097
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110906?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. An, Dawn & Kim, Nam H. & Choi, Joo-Ho, 2015. "Practical options for selecting data-driven or physics-based prognostics algorithms with reviews," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 223-236.
    2. Chang, Chun & Pan, Yaliang & Wang, Shaojin & Jiang, Jiuchun & Tian, Aina & Gao, Yang & Jiang, Yan & Wu, Tiezhou, 2024. "Fast EIS acquisition method based on SSA-DNN prediction model," Energy, Elsevier, vol. 288(C).
    3. Li, Tianmei & Pei, Hong & Si, Xiaosheng & Lei, Yaguo, 2023. "Prognosis for stochastic degrading systems with massive data: A data-model interactive perspective," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    4. Zhang, Yixing & Feng, Fei & Wang, Shunli & Meng, Jinhao & Xie, Jiale & Ling, Rui & Yin, Hongpeng & Zhang, Ke & Chai, Yi, 2023. "Joint nonlinear-drift-driven Wiener process-Markov chain degradation switching model for adaptive online predicting lithium-ion battery remaining useful life," Applied Energy, Elsevier, vol. 341(C).
    5. Nie, Songlin & Gao, Jianhang & Ma, Zhonghai & Yin, Fanglong & Ji, Hui, 2023. "An online data-driven approach for performance prediction of electro-hydrostatic actuator with thermal-hydraulic modeling," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    6. Zuo, Lin & Xu, Fengjie & Zhang, Changhua & Xiahou, Tangfan & Liu, Yu, 2022. "A multi-layer spiking neural network-based approach to bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    7. Yong Tian & Qianyuan Dong & Jindong Tian & Xiaoyu Li, 2023. "Capacity Estimation of Lithium-Ion Batteries Based on Multiple Small Voltage Sections and BP Neural Networks," Energies, MDPI, vol. 16(2), pages 1-18, January.
    8. Tian, Yong & Dong, Qianyuan & Tian, Jindong & Li, Xiaoyu & Li, Guang & Mehran, Kamyar, 2023. "Capacity estimation of lithium-ion batteries based on optimized charging voltage section and virtual sample generation," Applied Energy, Elsevier, vol. 332(C).
    9. Ma, Zhonghai & Liao, Haitao & Gao, Jianhang & Nie, Songlin & Geng, Yugang, 2023. "Physics-Informed Machine Learning for Degradation Modeling of an Electro-Hydrostatic Actuator System," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    10. Pan, Donghui & Wei, Yantao & Fang, Houzhang & Yang, Wenzhi, 2018. "A reliability estimation approach via Wiener degradation model with measurement errors," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 131-141.
    11. Lin, Yan-Hui & Ruan, Sheng-Jia & Chen, Yun-Xia & Li, Yan-Fu, 2023. "Physics-informed deep learning for lithium-ion battery diagnostics using electrochemical impedance spectroscopy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    12. Wang, Chu & Dou, Manfeng & Li, Zhongliang & Outbib, Rachid & Zhao, Dongdong & Zuo, Jian & Wang, Yuanlin & Liang, Bin & Wang, Peng, 2023. "Data-driven prognostics based on time-frequency analysis and symbolic recurrent neural network for fuel cells under dynamic load," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    13. Zhou, Yifei & Wang, Shunli & Xie, Yanxing & Shen, Xianfeng & Fernandez, Carlos, 2023. "Remaining useful life prediction and state of health diagnosis for lithium-ion batteries based on improved grey wolf optimization algorithm-deep extreme learning machine algorithm," Energy, Elsevier, vol. 285(C).
    14. Campari, Alessandro & Ustolin, Federico & Alvaro, Antonio & Paltrinieri, Nicola, 2024. "Inspection of hydrogen transport equipment: A data-driven approach to predict fatigue degradation," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    15. Meng, Huixing & Geng, Mengyao & Han, Te, 2023. "Long short-term memory network with Bayesian optimization for health prognostics of lithium-ion batteries based on partial incremental capacity analysis," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    16. Muhammad, Isyaku & Xiahou, Tangfan & Liu, Yu & Muhammad, Mustapha, 2024. "A random-effect Wiener process degradation model with transmuted normal distribution and ABC-Gibbs algorithm for parameter estimation," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    17. Xu, Yanwen & Kohtz, Sara & Boakye, Jessica & Gardoni, Paolo & Wang, Pingfeng, 2023. "Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    18. Li, Zhanhang & Zhou, Jian & Nassif, Hani & Coit, David & Bae, Jinwoo, 2023. "Fusing physics-inferred information from stochastic model with machine learning approaches for degradation prediction," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    19. Wei, Yupeng & Wu, Dazhong, 2023. "Prediction of state of health and remaining useful life of lithium-ion battery using graph convolutional network with dual attention mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Maohui & Li, Yanjun & Cao, Yuyuan & Ma, Xinyu & Xu, Zhenteng, 2025. "Physics-informed spatio-temporal hybrid neural networks for predicting remaining useful life in aircraft engine," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    2. Jiang, Chen & Zhong, Teng & Choi, Hyunhee & Youn, Byeng D., 2025. "Physics-informed Gaussian process probabilistic modeling with multi-source data for prognostics of degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 258(C).
    3. Fernández, Juan & Chiachío, Juan & Barros, José & Chiachío, Manuel & Kulkarni, Chetan S., 2024. "Physics-guided recurrent neural network trained with approximate Bayesian computation: A case study on structural response prognostics," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    4. Mei, Fabin & Chen, Hao & Yang, Wenying & Zhai, Guofu, 2024. "A hybrid physics-informed machine learning approach for time-dependent reliability assessment of electromagnetic relays," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    5. Liu, Jiale & Wang, Huan, 2024. "A brain-inspired energy-efficient Wide Spiking Residual Attention Framework for intelligent fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    6. Mo, Renpeng & Zhou, Han & Yin, Hongpeng & Si, Xiaosheng, 2025. "A survey on few-shot learning for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 257(PB).
    7. Zhang, Xugang & Gao, Xiyuan & Duan, Linchao & Gong, Qingshan & Wang, Yan & Ao, Xiuyi, 2025. "A novel method for state of health estimation of lithium-ion batteries based on fractional-order differential voltage-capacity curve," Applied Energy, Elsevier, vol. 377(PA).
    8. Oster, Matthew R. & King, Ethan & Bakker, Craig & Bhattacharya, Arnab & Chatterjee, Samrat & Pan, Feng, 2023. "Multi-level optimization with the koopman operator for data-driven, domain-aware, and dynamic system security," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    9. Park, Hyung Jun & Kim, Nam H. & Choi, Joo-Ho, 2024. "A robust health prediction using Bayesian approach guided by physical constraints," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    10. Lopez-Salazar, Camilo & Ekwaro-Osire, Stephen & Dabetwar, Shweta & Alemayehu, Fisseha, 2025. "A comprehensive framework for estimating the remaining useful life of Li-ion batteries under limited data conditions with no temporal identifier," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    11. Guo, Yongfang & Yu, Xiangyuan & Wang, Yashuang & Huang, Kai, 2024. "Health prognostics of lithium-ion batteries based on universal voltage range features mining and adaptive multi-Gaussian process regression with Harris Hawks optimization algorithm," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    12. Xiong, Jiawei & Zhou, Jian & Ma, Yizhong & Zhang, Fengxia & Lin, Chenglong, 2023. "Adaptive deep learning-based remaining useful life prediction framework for systems with multiple failure patterns," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    13. Yang, Shilong & Tang, Baoping & Wang, Weiying & Yang, Qichao & Hu, Cheng, 2024. "Physics-informed multi-state temporal frequency network for RUL prediction of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    14. Qiao, Yajing & Wang, Shaoping & Shi, Jian & Liu, Di & Tao, Mo, 2024. "Reliability model based on fault energy dissipation for mechatronic system," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    15. Wang, Zhenya & Zhang, Meng & Chen, Hui & Li, Jinghu & Li, Gaosong & Zhao, Jingshan & Yao, Ligang & Zhang, Jun & Chu, Fulei, 2025. "A generalized fault diagnosis framework for rotating machinery based on phase entropy," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    16. Pang, Zhendong & Luan, Yingxin & Chen, Jiahong & Li, Teng, 2024. "ParInfoGPT: An LLM-based two-stage framework for reliability assessment of rotating machine under partial information," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    17. Xu, Xiaodong & Tang, Shengjin & Han, Xuebing & Lu, Languang & Wu, Yu & Yu, Chuanqiang & Sun, Xiaoyan & Xie, Jian & Feng, Xuning & Ouyang, Minggao, 2023. "Fast capacity prediction of lithium-ion batteries using aging mechanism-informed bidirectional long short-term memory network," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    18. Xing, Xueqi & Yan, Tongtong & Xia, Min, 2025. "Early prediction of battery life using an interpretable health indicator with evolutionary computing," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    19. Zhang, Zhengxin & Li, Huiqin & Li, Tianmei & Zhang, Jianxun & Si, Xiaosheng, 2024. "An optimal condition-based maintenance policy for nonlinear stochastic degrading systems," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    20. Ma, Yan & Li, Jiaqi & Gao, Jinwu & Chen, Hong, 2024. "State of health prediction of lithium-ion batteries under early partial data based on IWOA-BiLSTM with single feature," Energy, Elsevier, vol. 295(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:258:y:2025:i:c:s0951832025001097. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.