IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v244y2024ics0951832024000292.html
   My bibliography  Save this article

A robust health prediction using Bayesian approach guided by physical constraints

Author

Listed:
  • Park, Hyung Jun
  • Kim, Nam H.
  • Choi, Joo-Ho

Abstract

Accurately predicting the remaining useful life (RUL) of industrial machinery is crucial for ensuring their reliability and safety. Prognostic methods that rely on Bayesian inference, such as the Bayesian method (BM), Kalman and Particle filter (KF, PF), have been extensively studied for RUL predictions. However, these algorithms can be affected by noise when training data are limited or uncertainty when empirical models are employed in place of accurate physics models. As a result, this can lead to significant prediction errors or even infeasible RUL predictions. To overcome this challenge, three different approaches are proposed to guide the Bayesian framework by incorporating low-fidelity physical information. The key idea is to impose inequality constraints to reduce sensitivity to noisy observations and achieve robust prediction. To evaluate the feasibility of the approaches, their performance is evaluated by a numerical example and real case study for drone motor degradation.

Suggested Citation

  • Park, Hyung Jun & Kim, Nam H. & Choi, Joo-Ho, 2024. "A robust health prediction using Bayesian approach guided by physical constraints," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:reensy:v:244:y:2024:i:c:s0951832024000292
    DOI: 10.1016/j.ress.2024.109954
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024000292
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.109954?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:244:y:2024:i:c:s0951832024000292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.