IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v389y2025ics0306261925004337.html
   My bibliography  Save this article

Coupling a capacity fade model with machine learning for early prediction of the battery capacity trajectory

Author

Listed:
  • Li, Tingkai
  • Liu, Jinqiang
  • Thelen, Adam
  • Mishra, Ankush Kumar
  • Yang, Xiao-Guang
  • Wang, Zhaoyu
  • Hu, Chao

Abstract

Early prediction of battery capacity degradation, including both the end of life and the entire degradation trajectory, can accelerate aging-focused manufacturing and design processes. However, most state-of-the-art research on early capacity trajectory prediction focuses on developing purely data-driven approaches to predict the capacity fade trajectory of cells, which sometimes leads to overconfident models that generalize poorly. This work investigates three methods of integrating empirical capacity fade models into a machine learning framework to improve the model’s accuracy and uncertainty calibration when generalizing beyond the training dataset. A critical element of our framework is the end-to-end optimization problem formulated to simultaneously fit an empirical capacity fade model to estimate the capacity trajectory and train a machine learning model to estimate the parameters of the empirical model using features from early-life data. The proposed end-to-end learning approach achieves prediction accuracies of less than 2 % mean absolute error for in-distribution test samples and less than 4 % mean absolute error for out-of-distribution samples using standard machine learning algorithms. Additionally, the end-to-end framework is extended to enable probabilistic predictions, demonstrating that the model uncertainty estimates are appropriately calibrated, even for out-of-distribution samples.

Suggested Citation

  • Li, Tingkai & Liu, Jinqiang & Thelen, Adam & Mishra, Ankush Kumar & Yang, Xiao-Guang & Wang, Zhaoyu & Hu, Chao, 2025. "Coupling a capacity fade model with machine learning for early prediction of the battery capacity trajectory," Applied Energy, Elsevier, vol. 389(C).
  • Handle: RePEc:eee:appene:v:389:y:2025:i:c:s0306261925004337
    DOI: 10.1016/j.apenergy.2025.125703
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925004337
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125703?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:389:y:2025:i:c:s0306261925004337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.