IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v260y2025ics095183202500198x.html
   My bibliography  Save this article

A global attention based gated temporal convolutional network for machine remaining useful life prediction

Author

Listed:
  • Xinyao, Xu
  • Xiaolei, Zhou
  • Qiang, Fan
  • Hao, Yan
  • Fangxiao, Wang

Abstract

As the core technique of the prognostic and health management field, data-driven remaining useful life (RUL) prediction generally requires abundant data to construct reliable mappings from monitoring data to machines’ RUL labels. However, the diverse working conditions of machines can lead to their different degradation trajectories, which makes similar data indicate diverse RULs of different machines. When predicting RULs with monitoring data, the phenomenon causes a severe label confusion problem and limits the performance of data-driven RUL prediction methods. In this paper, a new gated-temporal-convolutional-network-based method is proposed for RUL prediction tasks of machines. To handle the label confusion problem, a novel global attention mechanism is proposed, which enables the proposed model to identify confused data by the difference in machines’ global degradation tendencies. Besides, a new temporal convolutional network with a gating mechanism is proposed for better feature extraction performance. Moreover, a new nearest-neighbor-based data compensation strategy is designed to simplify data distributions. Both strategies also contribute to the solution of the problem. The proposed method is verified on an aircraft turbofan engine dataset and a bearing dataset. The experiment results show the effectiveness of the proposed method.

Suggested Citation

  • Xinyao, Xu & Xiaolei, Zhou & Qiang, Fan & Hao, Yan & Fangxiao, Wang, 2025. "A global attention based gated temporal convolutional network for machine remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:reensy:v:260:y:2025:i:c:s095183202500198x
    DOI: 10.1016/j.ress.2025.110997
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202500198X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110997?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:260:y:2025:i:c:s095183202500198x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.