IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v260y2025ics0951832025002388.html
   My bibliography  Save this article

Assist in real-time risk evaluation induced by electrical cabinet fires in nuclear power plants: A dual AI framework employing BiTCN and TCNN

Author

Listed:
  • Ma, Qiuju
  • Chen, Zhennan
  • Chen, Jianhua
  • Sun, Yubo
  • Chen, Nan
  • Du, Mengzhen

Abstract

Electrical cabinet fires in nuclear power plants pose significant threats to reactor safety. While numerous studies have investigated cabinet fires, risk real-time evolution induced by high-temperature smoke layer has not received sufficient attention. Consequently, this study proposes a dual AI framework, integrating the Bidirectional Temporal Convolutional Network (BiTCN) and Transposed Convolutional Neural Network (TCNN), to predict temperature field in advance. Database is constructed by Fire Dynamics Simulator (FDS), featuring various burner heights, heat release rates, and ventilation conditions. Temperature beneath ceiling and temperature field are recorded. Thermocouple data is used to train BiTCN for forecasting ceiling temperature with a lead time of 60 s. The trained BiTCN model achieved an exceptional R2 value exceeding 0.999. Compared to other methods, BiTCN has advantages in accuracy and computational efficiency. The TCNN takes output from BiTCN as input and FDS temperature slice results as output labels to deduce real-time changes in two-dimensional temperature field. It achieves an R2 value of 0.973. Although some discrepancies exist, results indicate strong predictive capability and reliability in capturing spatial and temporal dynamics of temperature field. This work demonstrates potential of using Artificial Intelligence (AI) to predict dynamic evolution of cabinet fires and represents a significant exploration of applying AI in nuclear safety.

Suggested Citation

  • Ma, Qiuju & Chen, Zhennan & Chen, Jianhua & Sun, Yubo & Chen, Nan & Du, Mengzhen, 2025. "Assist in real-time risk evaluation induced by electrical cabinet fires in nuclear power plants: A dual AI framework employing BiTCN and TCNN," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002388
    DOI: 10.1016/j.ress.2025.111037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025002388
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.111037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xiaolei & Hu, Longhua & Delichatsios, Michael A. & Zhang, Jianping, 2019. "Experimental study on flame morphologic characteristics of wall attached non-premixed buoyancy driven turbulent flames," Applied Energy, Elsevier, vol. 254(C).
    2. Gong, Mingju & Yan, Changcheng & Xu, Wei & Zhao, Zhixuan & Li, Wenxiang & Liu, Yan & Li, Sheng, 2023. "Short-term wind power forecasting model based on temporal convolutional network and Informer," Energy, Elsevier, vol. 283(C).
    3. Cao, Yudong & Ding, Yifei & Jia, Minping & Tian, Rushuai, 2021. "A novel temporal convolutional network with residual self-attention mechanism for remaining useful life prediction of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    4. Fu, Song & Lin, Lin & Wang, Yue & Guo, Feng & Zhao, Minghang & Zhong, Baihong & Zhong, Shisheng, 2024. "MCA-DTCN: A novel dual-task temporal convolutional network with multi-channel attention for first prediction time detection and remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    5. Safaei Arshi, Saiedeh & Nematollahi, Mohammadreza & Sepanloo, Kamran, 2010. "Coupling CFAST fire modeling and SAPHIRE probabilistic assessment software for internal fire safety evaluation of a typical TRIGA research reactor," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 166-172.
    6. Wang, Fu & Xiahou, Tangfan & Zhang, Xian & He, Pan & Yang, Taibo & Niu, Jiang & Liu, Caixue & Liu, Yu, 2024. "Convolutional preprocessing Transformer-based fault diagnosis for rectifier-filter circuits in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    7. Zhu, Qixiang & Zhou, Zheng & Li, Yasong & Yan, Ruqiang, 2024. "Contrastive BiLSTM-enabled Health Representation Learning for Remaining Useful Life Prediction," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    8. Li, Wanxiang & Shang, Zhiwu & Gao, Maosheng & Qian, Shiqi & Feng, Zehua, 2022. "Remaining useful life prediction based on transfer multi-stage shrinkage attention temporal convolutional network under variable working conditions," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    9. Wang, Chen & Zhang, Liming & Chen, Ling & Tan, Tian & Zhang, Cong, 2025. "Remaining useful life prediction of nuclear reactor control rod drive mechanism based on dynamic temporal convolutional network," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    10. Sakurahara, Tatsuya & Mohaghegh, Zahra & Reihani, Seyed & Kee, Ernie & Brandyberry, Mark & Rodgers, Shawn, 2018. "An integrated methodology for spatio-temporal incorporation of underlying failure mechanisms into fire probabilistic risk assessment of nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 242-257.
    11. Worrell, Clarence & Luangkesorn, Louis & Haight, Joel & Congedo, Thomas, 2019. "Machine learning of fire hazard model simulations for use in probabilistic safety assessments at nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 128-142.
    12. Yu, Longxing & Wan, Huaxian & Gao, Zihe & Ji, Jie, 2021. "Study on flame merging behavior and air entrainment restriction of multiple fires," Energy, Elsevier, vol. 218(C).
    13. Xu, Zhiqiang & Zhang, Yujie & Miao, Qiang, 2024. "An attention-based multi-scale temporal convolutional network for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    14. Cao, Lixiao & Zhang, Hongyu & Meng, Zong & Wang, Xueping, 2023. "A parallel GRU with dual-stage attention mechanism model integrating uncertainty quantification for probabilistic RUL prediction of wind turbine bearings," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    15. Ma, Qiuju & Chen, Zhennan & Chen, Jianhua & Du, Mengzhen & Sun, Yubo & Chen, Nan, 2025. "A predictive model for centerline temperature in electrical cabinet fires," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chen & Zhang, Liming & Chen, Ling & Tan, Tian & Zhang, Cong, 2025. "Remaining useful life prediction of nuclear reactor control rod drive mechanism based on dynamic temporal convolutional network," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    2. Yang, Shilong & Tang, Baoping & Wang, Weiying & Yang, Qichao & Hu, Cheng, 2024. "Physics-informed multi-state temporal frequency network for RUL prediction of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    3. Tang, Xueyang & Cai, Xiaopei & Wang, Yuqi & Wang, Pu & Yang, Fei, 2025. "Advanced VTSDREF for vehicle-turnout system dynamic reliability analysis: Integration of hybrid deep learning and adaptive probability density evolution method," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    4. Xu, Zhiqiang & Zhang, Yujie & Miao, Qiang, 2024. "An attention-based multi-scale temporal convolutional network for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    5. Liu, Shaoyang & Wei, Jingfeng & Li, Guofa & He, Jialong & Zhang, Baodong & Liu, Bo, 2025. "A two-stage remaining useful life prediction method based on adaptive feature metric and graph spatiotemporal attention rule learning," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    6. Wu, Xia & Liu, Zhiwen & Wang, Lei, 2025. "Spatio-temporal degradation model with graph neural network and structured state space model for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    7. Saxena, Sanchit & Kumar, Suman & Sharma, Hrishikesh, 2025. "A novel computational framework for efficient nuclear containment design: Structural integrity, radiation shielding, and reliability assessment," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    8. Xinyao, Xu & Xiaolei, Zhou & Qiang, Fan & Hao, Yan & Fangxiao, Wang, 2025. "A global attention based gated temporal convolutional network for machine remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    9. Ma, Qiuju & Chen, Zhennan & Chen, Jianhua & Zhai, Xu & Liu, Chenyu & Guo, Fushuai, 2025. "A study on the evolution of flame height and air entrainment volume rate for typical electrical cabinet fires in nuclear power plants," Applied Energy, Elsevier, vol. 382(C).
    10. Lyu, Yi & Shen, Zaichen & Zhou, Ningxu & Wen, Zhenfei & Chen, Ci, 2025. "A feature separation transfer network with contrastive metric for remaining useful life prediction under different working conditions," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    11. Yang, Jiahong & Zhou, Jianghong & Chai, Yi & Chen, Dingliang & Qin, Yi, 2025. "Benchmark transformation neural network for health indicator construction under time-varying speed and its application in machinery prognostics," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    12. Cui, Lingli & Shen, Qiang & Xiao, Yongchang & Liu, Dongdong & Wang, Huaqing, 2025. "Sparse graph structure fusion convolutional network for machinery remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    13. Ni, Qing & Ji, J.C. & Feng, Ke & Zhang, Yongchao & Lin, Dongdong & Zheng, Jinde, 2024. "Data-driven bearing health management using a novel multi-scale fused feature and gated recurrent unit," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    14. Cheng, Fang & Liu, Hui, 2024. "Multi-step electric vehicles charging loads forecasting: An autoformer variant with feature extraction, frequency enhancement, and error correction blocks," Applied Energy, Elsevier, vol. 376(PB).
    15. Cuesta, Jokin & Leturiondo, Urko & Vidal, Yolanda & Pozo, Francesc, 2025. "A review of prognostics and health management techniques in wind energy," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    16. Chen, Chuanhai & Li, Bowen & Guo, Jinyan & Liu, Zhifeng & Qi, Baobao & Hua, Chunlei, 2022. "Bearing life prediction method based on the improved FIDES reliability model," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    17. Li, Yuanfu & Chen, Yifan & Shao, Haonan & Zhang, Huisheng, 2023. "A novel dual attention mechanism combined with knowledge for remaining useful life prediction based on gated recurrent units," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    18. Yao, Xianshuang & Guo, Kangshuai & Lei, Jianqi & Li, Xuanyu, 2024. "Fully connected multi-reservoir echo state networks for wind power prediction," Energy, Elsevier, vol. 312(C).
    19. Sun, Xiepeng & Yi, Jiwei & Han, Yu & Zhang, Xiaolei & Tang, Fei & Hu, Longhua, 2024. "Facade flame depth coming out from the fire compartment opening subject the external sideward wind," Energy, Elsevier, vol. 304(C).
    20. Dong, Jie & Li, Daye & Cong, Zhiyu & Peng, Kaixiang, 2025. "A new fault detection method based on an updatable hybrid model for hard-to-detect faults in nonstationary processes," Reliability Engineering and System Safety, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.