IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v256y2025ics0951832024008615.html
   My bibliography  Save this article

A feature separation transfer network with contrastive metric for remaining useful life prediction under different working conditions

Author

Listed:
  • Lyu, Yi
  • Shen, Zaichen
  • Zhou, Ningxu
  • Wen, Zhenfei
  • Chen, Ci

Abstract

Data-driven remaining useful life (RUL) prediction methods have demonstrated excellent performance in recent years. Among these, transfer learning (TL) is widely adopted for cross-condition RUL prediction due to its ability to mitigate feature discrepancies across domains. However, most existing TL methods focus primarily on the global alignment of shared features, neglecting subdomain-specific features from different degradation stages and the impact of domain-private features. In this paper, we propose a feature separation and adaptive alignment model to address this limitation. First, a feature separation network is designed to decompose the deep features into two categories: shared features, which capture the inherent degradation patterns, and domain-specific features, which account for heterogeneity across varying operating conditions. The shared features are further categorized into subdomains based on different degradation stages. To ensure effective alignment, we develop a deep adaptive alignment method that facilitates both global alignment of the shared features and local alignment of the subdomain-specific features. Additionally, a contrastive metric module is introduced to enhance the representativeness of the features, which has been shown to improve both feature separation and alignment effectiveness. Experimental results on two benchmark datasets demonstrate that our proposed method outperforms existing approaches across various evaluation metrics.

Suggested Citation

  • Lyu, Yi & Shen, Zaichen & Zhou, Ningxu & Wen, Zhenfei & Chen, Ci, 2025. "A feature separation transfer network with contrastive metric for remaining useful life prediction under different working conditions," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:reensy:v:256:y:2025:i:c:s0951832024008615
    DOI: 10.1016/j.ress.2024.110790
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024008615
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110790?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yunshui Zheng & Weimin Chen & Yaning Zhang & Dengyu Bai, 2022. "Prediction of the Remaining Useful Life of a Switch Machine, Based on Multi-Source Data," Sustainability, MDPI, vol. 14(21), pages 1-13, November.
    2. Yan, Jianhai & Ye, Zhi-Sheng & He, Shuguang & He, Zhen, 2024. "A feature disentanglement and unsupervised domain adaptation of remaining useful life prediction for sensor-equipped machines," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    3. Cheng, Han & Kong, Xianguang & Wang, Qibin & Ma, Hongbo & Yang, Shengkang & Xu, Kun, 2023. "Remaining useful life prediction combined dynamic model with transfer learning under insufficient degradation data," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    4. Wang, Fujin & Zhao, Zhibin & Zhai, Zhi & Guo, Yanjie & Xi, Huan & Wang, Shibin & Chen, Xuefeng, 2023. "Feature disentanglement and tendency retainment with domain adaptation for Lithium-ion battery capacity estimation," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    5. Zhang, Jiusi & Li, Xiang & Tian, Jilun & Jiang, Yuchen & Luo, Hao & Yin, Shen, 2023. "A variational local weighted deep sub-domain adaptation network for remaining useful life prediction facing cross-domain condition," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    6. Xia, Jun & Feng, Yunwen & Teng, Da & Chen, Junyu & Song, Zhicen, 2022. "Distance self-attention network method for remaining useful life estimation of aeroengine with parallel computing," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    7. Zhu, Qixiang & Zhou, Zheng & Li, Yasong & Yan, Ruqiang, 2024. "Contrastive BiLSTM-enabled Health Representation Learning for Remaining Useful Life Prediction," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    8. Li, Wanxiang & Shang, Zhiwu & Gao, Maosheng & Qian, Shiqi & Feng, Zehua, 2022. "Remaining useful life prediction based on transfer multi-stage shrinkage attention temporal convolutional network under variable working conditions," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    9. Hu, Tao & Guo, Yiming & Gu, Liudong & Zhou, Yifan & Zhang, Zhisheng & Zhou, Zhiting, 2022. "Remaining useful life prediction of bearings under different working conditions using a deep feature disentanglement based transfer learning method," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    10. Zhuang, Jichao & Jia, Minping & Zhao, Xiaoli, 2022. "An adversarial transfer network with supervised metric for remaining useful life prediction of rolling bearing under multiple working conditions," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    11. Dong, Shaojiang & Xiao, Jiafeng & Hu, Xiaolin & Fang, Nengwei & Liu, Lanhui & Yao, Jinbao, 2023. "Deep transfer learning based on Bi-LSTM and attention for remaining useful life prediction of rolling bearing," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    12. Yi Lyu & Qichen Zhang & Zhenfei Wen & Aiguo Chen, 2022. "Remaining Useful Life Prediction Based on Multi-Representation Domain Adaptation," Mathematics, MDPI, vol. 10(24), pages 1-18, December.
    13. da Costa, Paulo Roberto de Oliveira & Akçay, Alp & Zhang, Yingqian & Kaymak, Uzay, 2020. "Remaining useful lifetime prediction via deep domain adaptation," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    14. Mao, Wentao & Zhang, Wen & Feng, Ke & Beer, Michael & Yang, Chunsheng, 2024. "Tensor representation-based transferability analytics and selective transfer learning of prognostic knowledge for remaining useful life prediction across machines," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Jianhai & Ye, Zhi-Sheng & He, Shuguang & He, Zhen, 2024. "A feature disentanglement and unsupervised domain adaptation of remaining useful life prediction for sensor-equipped machines," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    2. Liu, Yang & Zhou, Guangda & Zhao, Shujian & Li, Liang & Xie, Wenhua & Su, Bengan & Li, Yongwei & Zhao, Zhen, 2025. "A novel two-stage method via adversarial strategy for remaining useful life prediction of bearings under variable conditions," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    3. Han, Yan & Hu, Ailin & Huang, Qingqing & Zhang, Yan & Lin, Zhichao & Ma, Jinghua, 2025. "Sinkhorn divergence-based contrast domain adaptation for remaining useful life prediction of rolling bearings under multiple operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    4. Zhang, Zhiyao & Chen, Xiaohui & Zio, Enrico & Li, Longxiao, 2023. "Multi-task learning boosted predictions of the remaining useful life of aero-engines under scenarios of working-condition shift," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Han, Yaoyao & Ding, Xiaoxi & Gu, Fengshou & Chen, Xiaohui & Xu, Minmin, 2025. "Dual-drive RUL prediction of gear transmission systems based on dynamic model and unsupervised domain adaption under zero sample," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    6. Zhao, Hao & Pan, Rong, 2025. "Gaussian Derivative Change-point Detection for early warnings of industrial system failures," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    7. Yan, Jianhai & He, Zhen & He, Shuguang, 2023. "Multitask learning of health state assessment and remaining useful life prediction for sensor-equipped machines," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    8. Xiong, Jiawei & Zhou, Jian & Ma, Yizhong & Zhang, Fengxia & Lin, Chenglong, 2023. "Adaptive deep learning-based remaining useful life prediction framework for systems with multiple failure patterns," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    9. Shang, Jie & Xu, Danyang & Li, Mingyu & Qiu, Haobo & Jiang, Chen & Gao, Liang, 2025. "Remaining useful life prediction of rotating equipment under multiple operating conditions via multi-source adversarial distillation domain adaptation," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    10. Cheng, Han & Kong, Xianguang & Wang, Qibin & Ma, Hongbo & Yang, Shengkang & Xu, Kun, 2023. "Remaining useful life prediction combined dynamic model with transfer learning under insufficient degradation data," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    11. Li, Xuanlin & Hu, Yawei & Wang, Hang & Liu, Yongbin & Liu, Xianzeng & Lu, Huitian, 2025. "A closed-form continuous-depth neural-based hybrid difference features re-representation network for RUL prediction," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    12. Basora, Luis & Viens, Arthur & Chao, Manuel Arias & Olive, Xavier, 2025. "A benchmark on uncertainty quantification for deep learning prognostics," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    13. Mo, Renpeng & Zhou, Han & Yin, Hongpeng & Si, Xiaosheng, 2025. "A survey on few-shot learning for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 257(PB).
    14. Ma, Qiuju & Chen, Zhennan & Chen, Jianhua & Sun, Yubo & Chen, Nan & Du, Mengzhen, 2025. "Assist in real-time risk evaluation induced by electrical cabinet fires in nuclear power plants: A dual AI framework employing BiTCN and TCNN," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    15. Zheng, Yu & Chen, Liang & Bao, Xiangyu & Zhao, Fei & Zhong, Jingshu & Wang, Chenhan, 2025. "Prediction model optimization of gas turbine remaining useful life based on transfer learning and simultaneous distillation pruning algorithm," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    16. Wang, Wei & Song, Honghao & Si, Shubin & Lu, Wenhao & Cai, Zhiqiang, 2024. "Data augmentation based on diffusion probabilistic model for remaining useful life estimation of aero-engines," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    17. Wu, Xia & Liu, Zhiwen & Wang, Lei, 2025. "Spatio-temporal degradation model with graph neural network and structured state space model for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    18. Xu, Yuhui & Xia, Tangbin & Jiang, Yimin & Wang, Yu & Wang, Dong & Pan, Ershun & Xi, Lifeng, 2024. "A temporal partial domain adaptation network for transferable prognostics across working conditions with insufficient data," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    19. Yang, Jing & Wang, Xiaomin, 2024. "Meta-learning with deep flow kernel network for few shot cross-domain remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    20. He, Deqiang & Zhao, Jiayang & Jin, Zhenzhen & Huang, Chenggeng & Yi, Cai & Wu, Jinxin, 2025. "DCAGGCN: A novel method for remaining useful life prediction of bearings," Reliability Engineering and System Safety, Elsevier, vol. 260(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:256:y:2025:i:c:s0951832024008615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.