IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v242y2024ics0951832023006099.html
   My bibliography  Save this article

Tensor representation-based transferability analytics and selective transfer learning of prognostic knowledge for remaining useful life prediction across machines

Author

Listed:
  • Mao, Wentao
  • Zhang, Wen
  • Feng, Ke
  • Beer, Michael
  • Yang, Chunsheng

Abstract

In recent years, deep transfer learning techniques have been successfully applied to solve RUL prediction across different working conditions. However, for RUL prediction across different machines in which the data distribution and fault evolution characteristics vary largely, the extraction and transition of prognostic knowledge become more challenging. Even if fault mode information can assist in the knowledge transfer, model bias will inevitably exist on the target machine with mixed or unknown faults. To address this issue from a transferability perspective, this paper proposes a novel selective transfer learning approach for RUL prediction across machines. First, the paper utilizes the tensor representation to construct the meta-degradation trend of each fault mode and evaluates the transferability of source domain data from fault mode and degradation characteristics through a new cross-machine transfer degree indicator (M-TDI). Second, a Long Short-Term Memory (LSTM)-based selective transfer strategy is proposed using the M-TDIs. The paper designs a training algorithm with an alternating optimization scheme to seek the optimal tensor decomposition and knowledge transfer effect. Theoretical analysis proves that the proposed approach significantly reduces the upper bound of prediction error. Furthermore, experimental results on three benchmark datasets prove the effectiveness of the proposed approach.

Suggested Citation

  • Mao, Wentao & Zhang, Wen & Feng, Ke & Beer, Michael & Yang, Chunsheng, 2024. "Tensor representation-based transferability analytics and selective transfer learning of prognostic knowledge for remaining useful life prediction across machines," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023006099
    DOI: 10.1016/j.ress.2023.109695
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023006099
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109695?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023006099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.