IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v243y2024ics095183202300786x.html
   My bibliography  Save this article

Fault detection in complex mechatronic systems by a hierarchical graph convolution attention network based on causal paths

Author

Listed:
  • Zheng, Shuwen
  • Wang, Chong
  • Zio, Enrico
  • Liu, Jie

Abstract

Fault detection in mechatronic systems is crucial for their maintainability and safety. However, the systems monitoring variables are often abundant, with intricate connections. It is difficult to characterize their relationships and to extract effective features. In this paper, a hierarchical graph convolution attention network based on causal paths (HGCAN) is developed to improve the performance and interpretability of data-driven fault detection models in complex mechatronic systems. A hybrid causal discovery algorithm is introduced to discover the inherit causality among monitoring variables. The causal paths that sequentially connect the cause-effect variables serve as the reception fields to extract features using multiscale convolution. Different levels of the features are aggregated based on a hierarchical attention mechanism, which assigns adaptive weights considering the varied feature importance. To verify the effectiveness of the proposed method, a dataset of real high-speed train braking systems is considered. Experimental results demonstrate promising performance improvement of the proposed method, and analysis on interpretability indicates its potential to facilitate practical decision-making.

Suggested Citation

  • Zheng, Shuwen & Wang, Chong & Zio, Enrico & Liu, Jie, 2024. "Fault detection in complex mechatronic systems by a hierarchical graph convolution attention network based on causal paths," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:reensy:v:243:y:2024:i:c:s095183202300786x
    DOI: 10.1016/j.ress.2023.109872
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202300786X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109872?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:243:y:2024:i:c:s095183202300786x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.