IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v231y2023ics0951832022006044.html
   My bibliography  Save this article

Simulation-driven deep learning for locating faulty insulators in a power line

Author

Listed:
  • Gjorgiev, Blazhe
  • Das, Laya
  • Merkel, Seline
  • Rohrer, Martina
  • Auger, Etienne
  • Sansavini, Giovanni

Abstract

Overhead power transmission lines are repeatedly subject to environmental fluctuations that affect their insulation. Weakened insulation allows leakage current to increase over time, eventually triggering the protection and thereby causing unplanned power line outages. Current advancements in sensor technologies, data analysis, and machine learning make it possible to develop tools for online monitoring of power lines. The availability of data corresponding to different operating conditions plays an important role in the development of such tools. However, obtaining an adequate amount of data for different types, severity, and location of faults to reliably identify distinguishing patterns may not be feasible. Under these circumstances, a physics-based model of the line allows one to generate data for different insulation degradation states. In this work, we couple a machine learning approaches with a physics-based model of an existing power line in the Swiss power grid. The physics-based model is calibrated to produce leakage currents that are well aligned with measurements. The model is then used to produce large sets of leakage current data while simulating different states of fault at different locations along the power line. The faulty states are generated by varying the capacitance at different segments of the line. The generated data form the basis to train multiple state-of-the art machine learning methods, including long short-term memory and convolutional neural networks. Furthermore, we exploit different extraction techniques and automate the machine learning pipeline using custom layers. The objectives of the learned models are to detect the existence of a faulty insulators and their locations in the power line. The obtained models show accuracy higher than 99% on a test data set, which represents smaller part of the generated data set that has not been used in the training of the models.

Suggested Citation

  • Gjorgiev, Blazhe & Das, Laya & Merkel, Seline & Rohrer, Martina & Auger, Etienne & Sansavini, Giovanni, 2023. "Simulation-driven deep learning for locating faulty insulators in a power line," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:reensy:v:231:y:2023:i:c:s0951832022006044
    DOI: 10.1016/j.ress.2022.108989
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022006044
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108989?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zio, Enrico, 2022. "Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    2. Xia, Min & Shao, Haidong & Williams, Darren & Lu, Siliang & Shu, Lei & de Silva, Clarence W., 2021. "Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    3. Marashi, Koosha & Sarvestani, Sahra Sedigh & Hurson, Ali R., 2021. "Identification of interdependencies and prediction of fault propagation for cyber–physical systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    4. Arias Chao, Manuel & Kulkarni, Chetan & Goebel, Kai & Fink, Olga, 2022. "Fusing physics-based and deep learning models for prognostics," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    5. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    6. Lu, Qin & Zhang, Wei, 2022. "Integrating dynamic Bayesian network and physics-based modeling for risk analysis of a time-dependent power distribution system during hurricanes," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    7. Gjorgiev, Blazhe & Garrison, Jared B. & Han, Xuejiao & Landis, Florian & van Nieuwkoop, Renger & Raycheva, Elena & Schwarz, Marius & Yan, Xuqian & Demiray, Turhan & Hug, Gabriela & Sansavini, Giovanni, 2022. "Nexus-e: A platform of interfaced high-resolution models for energy-economic assessments of future electricity systems," Applied Energy, Elsevier, vol. 307(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lewis, Austin D. & Groth, Katrina M., 2022. "Metrics for evaluating the performance of complex engineering system health monitoring models," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    2. Varbella, Anna & Gjorgiev, Blazhe & Sansavini, Giovanni, 2023. "Geometric deep learning for online prediction of cascading failures in power grids," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    3. Zou, Xinyu & Tao, Laifa & Sun, Lulu & Wang, Chao & Ma, Jian & Lu, Chen, 2023. "A case-learning-based paradigm for quantitative recommendation of fault diagnosis algorithms: A case study of gearbox," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    4. Xu, Yanwen & Kohtz, Sara & Boakye, Jessica & Gardoni, Paolo & Wang, Pingfeng, 2023. "Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    5. Li, Yuanfu & Chen, Yao & Hu, Zhenchao & Zhang, Huisheng, 2023. "Remaining useful life prediction of aero-engine enabled by fusing knowledge and deep learning models," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    6. Hughes, William & Zhang, Wei & Cerrai, Diego & Bagtzoglou, Amvrossios & Wanik, David & Anagnostou, Emmanouil, 2022. "A Hybrid Physics-Based and Data-Driven Model for Power Distribution System Infrastructure Hardening and Outage Simulation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    7. Costa, Nahuel & Sánchez, Luciano, 2022. "Variational encoding approach for interpretable assessment of remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    8. Wang, Chu & Dou, Manfeng & Li, Zhongliang & Outbib, Rachid & Zhao, Dongdong & Zuo, Jian & Wang, Yuanlin & Liang, Bin & Wang, Peng, 2023. "Data-driven prognostics based on time-frequency analysis and symbolic recurrent neural network for fuel cells under dynamic load," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    9. Zhang, Qing & Tang, Lv & Xuan, Jianping & Shi, Tielin & Li, Rui, 2023. "An uncertainty relevance metric-based domain adaptation fault diagnosis method to overcome class relevance caused confusion," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    10. Zaitseva, Elena & Levashenko, Vitaly & Rabcan, Jan, 2023. "A new method for analysis of Multi-State systems based on Multi-valued decision diagram under epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    11. Lyu, Dongzhen & Niu, Guangxing & Liu, Enhui & Zhang, Bin & Chen, Gang & Yang, Tao & Zio, Enrico, 2022. "Time space modelling for fault diagnosis and prognosis with uncertainty management: A general theoretical formulation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    12. Xiong, Jiawei & Zhou, Jian & Ma, Yizhong & Zhang, Fengxia & Lin, Chenglong, 2023. "Adaptive deep learning-based remaining useful life prediction framework for systems with multiple failure patterns," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    13. Tang, Shengnan & Zhu, Yong & Yuan, Shouqi, 2022. "Intelligent fault identification of hydraulic pump using deep adaptive normalized CNN and synchrosqueezed wavelet transform," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    14. Ding, Yifei & Jia, Minping & Zhuang, Jichao & Cao, Yudong & Zhao, Xiaoli & Lee, Chi-Guhn, 2023. "Deep imbalanced domain adaptation for transfer learning fault diagnosis of bearings under multiple working conditions," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    15. Zhou, Taotao & Zhang, Laibin & Han, Te & Droguett, Enrique Lopez & Mosleh, Ali & Chan, Felix T.S., 2023. "An uncertainty-informed framework for trustworthy fault diagnosis in safety-critical applications," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    16. Park, Chan Hee & Kim, Hyeongmin & Suh, Chaehyun & Chae, Minseok & Yoon, Heonjun & Youn, Byeng D., 2022. "A health image for deep learning-based fault diagnosis of a permanent magnet synchronous motor under variable operating conditions: Instantaneous current residual map," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    17. Cheng, Han & Kong, Xianguang & Wang, Qibin & Ma, Hongbo & Yang, Shengkang & Xu, Kun, 2023. "Remaining useful life prediction combined dynamic model with transfer learning under insufficient degradation data," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    18. Huang, Wei & Shao, Changzheng & Hu, Bo & Li, Weizhan & Sun, Yue & Xie, Kaigui & Zio, Enrico & Li, Wenyuan, 2023. "A restoration-clustering-decomposition learning framework for aging-related failure rate estimation of distribution transformers," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    19. Zheng, Minglei & Man, Junfeng & Wang, Dian & Chen, Yanan & Li, Qianqian & Liu, Yong, 2023. "Semi-supervised multivariate time series anomaly detection for wind turbines using generator SCADA data," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    20. Giannakeas, Ilias N. & Mazaheri, Fatemeh & Bacarreza, Omar & Khodaei, Zahra Sharif & Aliabadi, Ferri M.H., 2023. "Probabilistic residual strength assessment of smart composite aircraft panels using guided waves," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:231:y:2023:i:c:s0951832022006044. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.