IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v230y2023ics0951832022005075.html
   My bibliography  Save this article

Deep imbalanced domain adaptation for transfer learning fault diagnosis of bearings under multiple working conditions

Author

Listed:
  • Ding, Yifei
  • Jia, Minping
  • Zhuang, Jichao
  • Cao, Yudong
  • Zhao, Xiaoli
  • Lee, Chi-Guhn

Abstract

The tremendous success of deep learning and transfer learning broadened the scope of fault diagnosis, especially the latter further improved the diagnosis accuracy under multiple working conditions. However, most existing attempts assume that label distribution is domain-invariant despite taking into account the different feature distributions. This does not accommodate the diversity of fault mode distributions under different operating conditions and weakens the generalization to imbalanced domain adaptation (IDA) scenarios. Therefore, this work proposed a novel deep imbalanced domain adaptation (DIDA) framework for fault diagnosis of bearings, aiming at the challenging scenario where feature shift and label shift exist simultaneously under different working conditions. Specifically, DIDA overcomes the class-imbalanced label shift and achieves a fine-grained latent space matching by cost-sensitive learning and categorical alignment. Besides, margin loss regularization is introduced to further optimize classification boundaries and improve cross-domain generalization for IDA fault diagnosis tasks. Finally, we simulated the IDA protocols on experimental datasets and conducted case studies under multiple working conditions, thus validating the effectiveness and superiority of the proposed framework.

Suggested Citation

  • Ding, Yifei & Jia, Minping & Zhuang, Jichao & Cao, Yudong & Zhao, Xiaoli & Lee, Chi-Guhn, 2023. "Deep imbalanced domain adaptation for transfer learning fault diagnosis of bearings under multiple working conditions," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
  • Handle: RePEc:eee:reensy:v:230:y:2023:i:c:s0951832022005075
    DOI: 10.1016/j.ress.2022.108890
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022005075
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108890?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xia, Min & Shao, Haidong & Williams, Darren & Lu, Siliang & Shu, Lei & de Silva, Clarence W., 2021. "Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Ding, Yifei & Zhuang, Jichao & Ding, Peng & Jia, Minping, 2022. "Self-supervised pretraining via contrast learning for intelligent incipient fault detection of bearings," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    3. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    4. Ding, Yifei & Jia, Minping & Miao, Qiuhua & Huang, Peng, 2021. "Remaining useful life estimation using deep metric transfer learning for kernel regression," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    5. Fu, Song & Zhang, Yongjian & Lin, Lin & Zhao, Minghang & Zhong, Shi-sheng, 2021. "Deep residual LSTM with domain-invariance for remaining useful life prediction across domains," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Xiaohan Chen & Beike Zhang & Dong Gao, 2021. "Bearing fault diagnosis base on multi-scale CNN and LSTM model," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 971-987, April.
    7. Reed, William J., 2001. "The Pareto, Zipf and other power laws," Economics Letters, Elsevier, vol. 74(1), pages 15-19, December.
    8. Wu, Jingyao & Zhao, Zhibin & Sun, Chuang & Yan, Ruqiang & Chen, Xuefeng, 2021. "Learning from Class-imbalanced Data with a Model-Agnostic Framework for Machine Intelligent Diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. Manjurul Islam, M.M. & Kim, Jong-Myon, 2019. "Reliable multiple combined fault diagnosis of bearings using heterogeneous feature models and multiclass support vector Machines," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 55-66.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Shen & Zhong, Xiang & Shao, Haidong & Ming, Yuhang & Liu, Chao & Liu, Bin, 2023. "Digital twin-assisted imbalanced fault diagnosis framework using subdomain adaptive mechanism and margin-aware regularization," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    2. Zhao, Ke & Hu, Junchen & Shao, Haidong & Hu, Jiabei, 2023. "Federated multi-source domain adversarial adaptation framework for machinery fault diagnosis with data privacy," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    3. Cao, Yudong & Jia, Minping & Zhao, Xiaoli & Yan, Xiaoan & Feng, Ke, 2024. "Complex augmented representation network for transferable health prognosis of rolling bearing considering dynamic covariate shift," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    4. Liu, Jianing & Cao, Hongrui & Luo, Yang, 2023. "An information-induced fault diagnosis framework generalizing from stationary to unknown nonstationary working conditions," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Xia, Pengcheng & Huang, Yixiang & Tao, Zhiyu & Liu, Chengliang & Liu, Jie, 2023. "A digital twin-enhanced semi-supervised framework for motor fault diagnosis based on phase-contrastive current dot pattern," Reliability Engineering and System Safety, Elsevier, vol. 235(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xin & Yang, Yu & Wu, Zhantao & Yan, Ke & Shao, Haidong & Cheng, Junsheng, 2022. "High-accuracy gearbox health state recognition based on graph sparse random vector functional link network," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    2. Zou, Xinyu & Tao, Laifa & Sun, Lulu & Wang, Chao & Ma, Jian & Lu, Chen, 2023. "A case-learning-based paradigm for quantitative recommendation of fault diagnosis algorithms: A case study of gearbox," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    3. Park, Chan Hee & Kim, Hyeongmin & Suh, Chaehyun & Chae, Minseok & Yoon, Heonjun & Youn, Byeng D., 2022. "A health image for deep learning-based fault diagnosis of a permanent magnet synchronous motor under variable operating conditions: Instantaneous current residual map," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    4. Liu, Shaowei & Jiang, Hongkai & Wu, Zhenghong & Yi, Zichun & Wang, Ruixin, 2023. "Intelligent fault diagnosis of rotating machinery using a multi-source domain adaptation network with adversarial discrepancy matching," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    5. Shi, Yaowei & Deng, Aidong & Deng, Minqiang & Xu, Meng & Liu, Yang & Ding, Xue & Li, Jing, 2022. "Transferable adaptive channel attention module for unsupervised cross-domain fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    6. Dong, Yutong & Jiang, Hongkai & Wu, Zhenghong & Yang, Qiao & Liu, Yunpeng, 2023. "Digital twin-assisted multiscale residual-self-attention feature fusion network for hypersonic flight vehicle fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    7. Wang, Chu & Dou, Manfeng & Li, Zhongliang & Outbib, Rachid & Zhao, Dongdong & Zuo, Jian & Wang, Yuanlin & Liang, Bin & Wang, Peng, 2023. "Data-driven prognostics based on time-frequency analysis and symbolic recurrent neural network for fuel cells under dynamic load," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    8. Zhang, Qing & Tang, Lv & Xuan, Jianping & Shi, Tielin & Li, Rui, 2023. "An uncertainty relevance metric-based domain adaptation fault diagnosis method to overcome class relevance caused confusion," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    9. Guo, Jianchun & Si, Zetian & Liu, Yi & Li, Jiahao & Li, Yanting & Xiang, Jiawei, 2022. "Dynamic time warping using graph similarity guided symplectic geometry mode decomposition to detect bearing faults," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    10. Bai, Ruxue & Meng, Zong & Xu, Quansheng & Fan, Fengjie, 2023. "Fractional Fourier and time domain recurrence plot fusion combining convolutional neural network for bearing fault diagnosis under variable working conditions," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    11. Zuo, Lin & Xu, Fengjie & Zhang, Changhua & Xiahou, Tangfan & Liu, Yu, 2022. "A multi-layer spiking neural network-based approach to bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    12. Tang, Shengnan & Zhu, Yong & Yuan, Shouqi, 2022. "Intelligent fault identification of hydraulic pump using deep adaptive normalized CNN and synchrosqueezed wavelet transform," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    13. Guan, Yang & Meng, Zong & Sun, Dengyun & Liu, Jingbo & Fan, Fengjie, 2021. "2MNet: Multi-sensor and multi-scale model toward accurate fault diagnosis of rolling bearing," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    14. Cheng, Han & Kong, Xianguang & Wang, Qibin & Ma, Hongbo & Yang, Shengkang & Xu, Kun, 2023. "Remaining useful life prediction combined dynamic model with transfer learning under insufficient degradation data," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    15. Gjorgiev, Blazhe & Das, Laya & Merkel, Seline & Rohrer, Martina & Auger, Etienne & Sansavini, Giovanni, 2023. "Simulation-driven deep learning for locating faulty insulators in a power line," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    16. Guo, Junchao & He, Qingbo & Zhen, Dong & Gu, Fengshou & Ball, Andrew D., 2023. "Multi-sensor data fusion for rotating machinery fault detection using improved cyclic spectral covariance matrix and motor current signal analysis," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    17. Zhuang, Jichao & Jia, Minping & Zhao, Xiaoli, 2022. "An adversarial transfer network with supervised metric for remaining useful life prediction of rolling bearing under multiple working conditions," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    18. Dong, Shaojiang & Xiao, Jiafeng & Hu, Xiaolin & Fang, Nengwei & Liu, Lanhui & Yao, Jinbao, 2023. "Deep transfer learning based on Bi-LSTM and attention for remaining useful life prediction of rolling bearing," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    19. Zhao, Chao & Shen, Weiming, 2022. "Dual adversarial network for cross-domain open set fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    20. Kong, Ziqian & Jin, Xiaohang & Xu, Zhengguo & Chen, Zian, 2023. "A contrastive learning framework enhanced by unlabeled samples for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 234(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:230:y:2023:i:c:s0951832022005075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.