IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v260y2025ics0951832025002510.html
   My bibliography  Save this article

Fault semantic knowledge transfer learning: Cross-domain compound fault diagnosis method under limited single fault samples

Author

Listed:
  • Xia, Huaitao
  • Meng, Tao
  • Zuo, Zonglin
  • Ma, Wenjie

Abstract

The coupling of faults leads to an exponential growth of compound fault types, making it impractical to collect complete labeled compound fault data in real-world scenarios. While cross-domain compound fault diagnosis (the target-domain does not have labeled compound fault data) is crucial for system reliability, existing methods often rely on abundant single-fault samples and rarely validate the reliability when single-fault data is limited. To overcome this limitation, we propose a novel fault semantic knowledge transfer learning framework. Specifically, FSKTL incorporates inter-class semantic distance loss in the source-domain, enabling fault classification through low-dimensional fault semantics and identifying the optimal fault semantic correlation function. Subsequently, FSKTL introduces inter-domain semantic alignment loss in the target-domain. This approach not only preserves the semantic space optimized by the source-domain for fault classification, but also achieves domain adaptation, enhancing the cross-domain generalization of the optimal fault semantic correlation function. Finally, extensive experiments are conducted on two publicly available datasets to validate the effectiveness of the proposed method. The results demonstrate that compared to other methods, this approach achieves the highest accuracy in cross-domain compound and single fault diagnosis.

Suggested Citation

  • Xia, Huaitao & Meng, Tao & Zuo, Zonglin & Ma, Wenjie, 2025. "Fault semantic knowledge transfer learning: Cross-domain compound fault diagnosis method under limited single fault samples," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002510
    DOI: 10.1016/j.ress.2025.111050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025002510
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.111050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.