IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v260y2025ics0951832025002510.html
   My bibliography  Save this article

Fault semantic knowledge transfer learning: Cross-domain compound fault diagnosis method under limited single fault samples

Author

Listed:
  • Xia, Huaitao
  • Meng, Tao
  • Zuo, Zonglin
  • Ma, Wenjie

Abstract

The coupling of faults leads to an exponential growth of compound fault types, making it impractical to collect complete labeled compound fault data in real-world scenarios. While cross-domain compound fault diagnosis (the target-domain does not have labeled compound fault data) is crucial for system reliability, existing methods often rely on abundant single-fault samples and rarely validate the reliability when single-fault data is limited. To overcome this limitation, we propose a novel fault semantic knowledge transfer learning framework. Specifically, FSKTL incorporates inter-class semantic distance loss in the source-domain, enabling fault classification through low-dimensional fault semantics and identifying the optimal fault semantic correlation function. Subsequently, FSKTL introduces inter-domain semantic alignment loss in the target-domain. This approach not only preserves the semantic space optimized by the source-domain for fault classification, but also achieves domain adaptation, enhancing the cross-domain generalization of the optimal fault semantic correlation function. Finally, extensive experiments are conducted on two publicly available datasets to validate the effectiveness of the proposed method. The results demonstrate that compared to other methods, this approach achieves the highest accuracy in cross-domain compound and single fault diagnosis.

Suggested Citation

  • Xia, Huaitao & Meng, Tao & Zuo, Zonglin & Ma, Wenjie, 2025. "Fault semantic knowledge transfer learning: Cross-domain compound fault diagnosis method under limited single fault samples," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002510
    DOI: 10.1016/j.ress.2025.111050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025002510
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.111050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Zisheng & Xuan, Jianping & Shi, Tielin & Li, Yan-Fu, 2025. "Multi-label domain adversarial reinforcement learning for unsupervised compound fault recognition," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
    2. Lu, Feiyu & Tong, Qingbin & Jiang, Xuedong & Feng, Ziwei & Liu, Ruifang & Xu, Jianjun & Huo, Jingyi, 2024. "DPICEN: Deep physical information consistency embedded network for bearing fault diagnosis under unknown domain," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    3. Gao, Tianyu & Yang, Jingli & Wang, Wenmin & Fan, Xiaopeng, 2024. "A domain feature decoupling network for rotating machinery fault diagnosis under unseen operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    4. Hei, Zhendong & Sun, Weifang & Yang, Haiyang & Zhong, Meipeng & Li, Yanling & Kumar, Anil & Xiang, Jiawei & Zhou, Yuqing, 2025. "Novel domain-adaptive Wasserstein generative adversarial networks for early bearing fault diagnosis under various conditions," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    5. Ma, Chenyang & Wang, Xianzhi & Li, Yongbo & Cai, Zhiqiang, 2024. "Broad zero-shot diagnosis for rotating machinery with untrained compound faults," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    6. Liao, Zengbu & Zhan, Keyi & Zhao, Hang & Deng, Yuntao & Geng, Jia & Chen, Xuefeng & Song, Zhiping, 2024. "Addressing class-imbalanced learning in real-time aero-engine gas-path fault diagnosis via feature filtering and mapping," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    7. Azari, Mehdi Saman & Santini, Stefania & Edrisi, Farid & Flammini, Francesco, 2025. "Self-adaptive fault diagnosis for unseen working conditions based on digital twins and domain generalization," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    8. Liu, Jie & Xu, Huoyao & Peng, Xiangyu & Wang, Junlang & He, Chaoming, 2023. "Reliable composite fault diagnosis of hydraulic systems based on linear discriminant analysis and multi-output hybrid kernel extreme learning machine," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    9. Li, Gang & Hu, Jiayao & Ding, Yaping & Tang, Aimin & Ao, Jiaxing & Hu, Dalong & Liu, Yang, 2024. "A novel method for fault diagnosis of fluid end of drilling pump under complex working conditions," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    10. Ding, Yifei & Jia, Minping & Zhuang, Jichao & Cao, Yudong & Zhao, Xiaoli & Lee, Chi-Guhn, 2023. "Deep imbalanced domain adaptation for transfer learning fault diagnosis of bearings under multiple working conditions," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    11. Cai, Li & Deng, Xuanhong & Yin, Hongpeng & Lin, Jingdong & Qin, Yan, 2025. "Generalized zero-sample industrial fault diagnosis with domain bias," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Yu & Li, Xiangyu & Zhang, Jundong & Cheng, Ziyi, 2025. "SDCGAN: A CycleGAN-based single-domain generalization method for mechanical fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 258(C).
    2. Chen, Xirui & Liu, Hui, 2025. "Domain correction for hydraulic internal pump leakage detection considering multiclass aberrant flow data," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    3. Chen, Yuejian & Liu, Xuemei & Rao, Meng & Qin, Yong & Wang, Zhipeng & Ji, Yuanjin, 2025. "Explicit speed-integrated LSTM network for non-stationary gearbox vibration representation and fault detection under varying speed conditions," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    4. Wang, Zhenya & Zhang, Meng & Chen, Hui & Li, Jinghu & Li, Gaosong & Zhao, Jingshan & Yao, Ligang & Zhang, Jun & Chu, Fulei, 2025. "A generalized fault diagnosis framework for rotating machinery based on phase entropy," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    5. Dai, Menghang & Liu, Zhiliang & Wang, Jinrui & Zuo, Mingjian, 2024. "Physics-driven feature alignment combined with dynamic distribution adaptation for three-cylinder drilling pump cross-speed fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    6. Zheng, Yu & Chen, Liang & Bao, Xiangyu & Zhao, Fei & Zhong, Jingshu & Wang, Chenhan, 2025. "Prediction model optimization of gas turbine remaining useful life based on transfer learning and simultaneous distillation pruning algorithm," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    7. Kim, Yong Chae & Lee, Jinwook & Kim, Taehun & Baek, Jonghwa & Ko, Jin Uk & Jung, Joon Ha & Youn, Byeng D., 2024. "Gradient Alignment based Partial Domain Adaptation (GAPDA) using a domain knowledge filter for fault diagnosis of bearing," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    8. Zhou, Haoxuan & Wang, Bingsen & Zio, Enrico & Lei, Zihao & Wen, Guangrui & Chen, Xuefeng, 2025. "Unsupervised anomaly detection of machines operating under time-varying conditions: DCD-VAE enabled feature disentanglement of operating conditions and states," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    9. Yan, Shen & Zhong, Xiang & Shao, Haidong & Ming, Yuhang & Liu, Chao & Liu, Bin, 2023. "Digital twin-assisted imbalanced fault diagnosis framework using subdomain adaptive mechanism and margin-aware regularization," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    10. Liu, Jianing & Cao, Hongrui & Luo, Yang, 2023. "An information-induced fault diagnosis framework generalizing from stationary to unknown nonstationary working conditions," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    11. Sun, Yongjian & Yu, Gang & Wang, Wei, 2025. "Image texture feature fusion enhancement for bearing fault diagnosis based on maximum gradient," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    12. Dong, Haoyan & Peng, Chuang & Chen, Lei & Hao, Kuangrong, 2025. "Dynamic ensemble fault diagnosis framework with adaptive hierarchical sampling strategy for industrial imbalanced and overlapping data," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    13. Xu, Jiamin & Mo, Siwen & Xu, Zixuan & Chen, Zhiwen & Yang, Chao & Jiang, Zhaohui, 2025. "Semi-supervised ISA: A novel industrial knowledge graph construction method enhanced by the fault log corpus analysis and semi-supervised learning," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    14. Cao, Yudong & Jia, Minping & Zhao, Xiaoli & Yan, Xiaoan & Feng, Ke, 2024. "Complex augmented representation network for transferable health prognosis of rolling bearing considering dynamic covariate shift," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    15. Zhang, Xiao & Huang, Weiguo & Wang, Jun & Zhu, Zhongkui & Shen, Changqing & Chen, Kai & Zhong, Xingli & He, Li, 2025. "Adaptive variational sampling-embedded domain generalization network for fault diagnosis with intra-inter-domain class imbalance," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    16. Zhao, Ke & Hu, Junchen & Shao, Haidong & Hu, Jiabei, 2023. "Federated multi-source domain adversarial adaptation framework for machinery fault diagnosis with data privacy," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    17. Wang, Haoyu & Li, Chuanjiang & Ding, Peng & Li, Shaobo & Li, Tandong & Liu, Chenyu & Zhang, Xiangjie & Hong, Zejian, 2024. "A novel transformer-based few-shot learning method for intelligent fault diagnosis with noisy labels under varying working conditions," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    18. Mu, Guoqing & Liu, Ching-Lien & Chen, Junghui, 2025. "Integrating physical knowledge for generative-based zero-shot learning models in process fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 258(C).
    19. Yu, Aobo & Cai, Bolin & Wu, Qiujie & García, Miguel Martínez & Li, Jing & Chen, Xiangcheng, 2024. "Source-free domain adaptation method for fault diagnosis of rotation machinery under partial information," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    20. Li, Sai & Peng, Yanfeng & Shen, Yiping & Zhao, Sibo & Shao, Haidong & Bin, Guangfu & Guo, Yong & Yang, Xingkai & Fan, Chao, 2024. "Rolling Bearing Fault Diagnosis Under Data Imbalance and Variable Speed Based on Adaptive Clustering Weighted Oversampling," Reliability Engineering and System Safety, Elsevier, vol. 244(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.