IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v248y2024ics0951832024002552.html
   My bibliography  Save this article

Source-free domain adaptation method for fault diagnosis of rotation machinery under partial information

Author

Listed:
  • Yu, Aobo
  • Cai, Bolin
  • Wu, Qiujie
  • García, Miguel Martínez
  • Li, Jing
  • Chen, Xiangcheng

Abstract

Fault diagnosis is crucial for reliability assessment of rotation machinery. Due to issues such as data privacy, it is impossible to get complete information for fault diagnosis in practical and challenging scenario. To solve aforementioned problem, fault diagnosis under partial information is studied. A source-free domain adaptation method for fault diagnosis, enabling cross-domain fault diagnosis without accessing the source data, is proposed. Firstly, multireceptive field graph convolutional(MRF-GCN) was used to aggregate different numbers of node information from different receptive fields for extracting more representative features. Secondly during the training process on the target domain, positive and negative pairs are constructed based on the samples’ neighbors and extended neighbors. Clustering and domain adaptation are then performed using a contrastive loss. Finally, information maximization loss is employed to improve the diagnostic accuracy. Experimental results demonstrate that, the proposed approach achieves favorable diagnostic performance under partial information, even without access to source domain data.

Suggested Citation

  • Yu, Aobo & Cai, Bolin & Wu, Qiujie & García, Miguel Martínez & Li, Jing & Chen, Xiangcheng, 2024. "Source-free domain adaptation method for fault diagnosis of rotation machinery under partial information," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
  • Handle: RePEc:eee:reensy:v:248:y:2024:i:c:s0951832024002552
    DOI: 10.1016/j.ress.2024.110181
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024002552
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110181?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Biliang & Zhang, Yingjie & Liu, Zhaohua & Wei, Hualiang & Sun, Qingshuai, 2023. "A novel sample selection approach based universal unsupervised domain adaptation for fault diagnosis of rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    2. Ding, Yifei & Zhuang, Jichao & Ding, Peng & Jia, Minping, 2022. "Self-supervised pretraining via contrast learning for intelligent incipient fault detection of bearings," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    3. Li, Qikang & Tang, Baoping & Deng, Lei & Zhu, Peng, 2023. "Source-free domain adaptation framework for fault diagnosis of rotation machinery under data privacy," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    4. Shi, Mingkuan & Ding, Chuancang & Wang, Rui & Shen, Changqing & Huang, Weiguo & Zhu, Zhongkui, 2023. "Graph embedding deep broad learning system for data imbalance fault diagnosis of rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    5. Rahul Rai & Manoj Kumar Tiwari & Dmitry Ivanov & Alexandre Dolgui, 2021. "Machine learning in manufacturing and industry 4.0 applications," International Journal of Production Research, Taylor & Francis Journals, vol. 59(16), pages 4773-4778, August.
    6. Chaleshtori, Amir Eshaghi & Aghaie, Abdollah, 2024. "A novel bearing fault diagnosis approach using the Gaussian mixture model and the weighted principal component analysis," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    7. Ding, Yifei & Jia, Minping & Zhuang, Jichao & Cao, Yudong & Zhao, Xiaoli & Lee, Chi-Guhn, 2023. "Deep imbalanced domain adaptation for transfer learning fault diagnosis of bearings under multiple working conditions," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    8. Zhao, Chao & Shen, Weiming, 2022. "Dual adversarial network for cross-domain open set fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Qikang & Tang, Baoping & Deng, Lei & Yang, Qichao & Zhu, Peng, 2024. "Adaptive centroid prototype-based domain adaptation for fault diagnosis of rotating machinery without source data," Reliability Engineering and System Safety, Elsevier, vol. 251(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miao, Mengqi & Wang, Yun & Yu, Jianbo, 2024. "Temporal self-supervised domain adaptation network for machinery fault diagnosis under multiple non-ideal conditions," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    2. Shi, Yaowei & Deng, Aidong & Deng, Minqiang & Xu, Meng & Liu, Yang & Ding, Xue & Li, Jing, 2022. "Transferable adaptive channel attention module for unsupervised cross-domain fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    3. Li, Sai & Peng, Yanfeng & Shen, Yiping & Zhao, Sibo & Shao, Haidong & Bin, Guangfu & Guo, Yong & Yang, Xingkai & Fan, Chao, 2024. "Rolling Bearing Fault Diagnosis Under Data Imbalance and Variable Speed Based on Adaptive Clustering Weighted Oversampling," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    4. Liu, Shaowei & Jiang, Hongkai & Wu, Zhenghong & Yi, Zichun & Wang, Ruixin, 2023. "Intelligent fault diagnosis of rotating machinery using a multi-source domain adaptation network with adversarial discrepancy matching," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    5. Govindan, Kannan & Kannan, Devika & Jørgensen, Thomas Ballegård & Nielsen, Tim Straarup, 2022. "Supply Chain 4.0 performance measurement: A systematic literature review, framework development, and empirical evidence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    6. Wang, Haoyu & Li, Chuanjiang & Ding, Peng & Li, Shaobo & Li, Tandong & Liu, Chenyu & Zhang, Xiangjie & Hong, Zejian, 2024. "A novel transformer-based few-shot learning method for intelligent fault diagnosis with noisy labels under varying working conditions," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    7. Yu, Tian & Li, Chaoshun & Huang, Jie & Xiao, Xiangqu & Zhang, Xiaoyuan & Li, Yuhong & Fu, Bitao, 2024. "ReF-DDPM: A novel DDPM-based data augmentation method for imbalanced rolling bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    8. Jiuh‐Biing Sheu & Tsan‐Ming Choi, 2023. "Can we work more safely and healthily with robot partners? A human‐friendly robot–human‐coordinated order fulfillment scheme," Production and Operations Management, Production and Operations Management Society, vol. 32(3), pages 794-812, March.
    9. Mohammed Majid Abdulrazzaq & Nehad T. A. Ramaha & Alaa Ali Hameed & Mohammad Salman & Dong Keon Yon & Norma Latif Fitriyani & Muhammad Syafrudin & Seung Won Lee, 2024. "Consequential Advancements of Self-Supervised Learning (SSL) in Deep Learning Contexts," Mathematics, MDPI, vol. 12(5), pages 1-42, March.
    10. Sachin Kumar & T. Gopi & N. Harikeerthana & Munish Kumar Gupta & Vidit Gaur & Grzegorz M. Krolczyk & ChuanSong Wu, 2023. "Machine learning techniques in additive manufacturing: a state of the art review on design, processes and production control," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 21-55, January.
    11. Zhang, Zhongwei & Jiao, Zonghao & Li, Youjia & Shao, Mingyu & Dai, Xiangjun, 2024. "Intelligent fault diagnosis of bearings driven by double-level data fusion based on multichannel sample fusion and feature fusion under time-varying speed conditions," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    12. Dai, Menghang & Liu, Zhiliang & Wang, Jinrui & Zuo, Mingjian, 2024. "Physics-driven feature alignment combined with dynamic distribution adaptation for three-cylinder drilling pump cross-speed fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    13. Li, Qikang & Tang, Baoping & Deng, Lei & Yang, Qichao & Zhu, Peng, 2024. "Adaptive centroid prototype-based domain adaptation for fault diagnosis of rotating machinery without source data," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    14. Zhang, Qing & Tang, Lv & Xuan, Jianping & Shi, Tielin & Li, Rui, 2023. "An uncertainty relevance metric-based domain adaptation fault diagnosis method to overcome class relevance caused confusion," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    15. Bai, Guo-Peng & Er, Guo-Kang & Iu, Vai Pan, 2024. "A novel stochastic approach to investigate the probabilistic characteristics of the ship roll system with sinusoidal restoring force," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    16. Ma, Yulin & Li, Lei & Yang, Jun, 2022. "Convolutional kernel aggregated domain adaptation for intelligent fault diagnosis with label noise," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    17. Zhao, Chao & Shen, Weiming, 2022. "Adaptive open set domain generalization network: Learning to diagnose unknown faults under unknown working conditions," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    18. Kim, Yong Chae & Lee, Jinwook & Kim, Taehun & Baek, Jonghwa & Ko, Jin Uk & Jung, Joon Ha & Youn, Byeng D., 2024. "Gradient Alignment based Partial Domain Adaptation (GAPDA) using a domain knowledge filter for fault diagnosis of bearing," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    19. Fang, Xiaoyu & Qu, Jianfeng & Chai, Yi, 2023. "Self-supervised intermittent fault detection for analog circuits guided by prior knowledge," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    20. Zheng, Xiaorong & Nie, Jiahao & He, Zhiwei & Li, Ping & Dong, Zhekang & Gao, Mingyu, 2024. "A fine-grained feature decoupling based multi-source domain adaptation network for rotating machinery fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:248:y:2024:i:c:s0951832024002552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.