IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v254y2025ipbs095183202400721x.html
   My bibliography  Save this article

Pseudo-label assisted contrastive learning model for unsupervised open-set domain adaptation in fault diagnosis

Author

Listed:
  • Wang, Weicheng
  • Li, Chao
  • Zhang, Zhipeng
  • Chen, Jinglong
  • He, Shuilong
  • Feng, Yong

Abstract

The operation of mechanical equipment is frequently characterized by complexity and variability, leading to signal domain shifts. This phenomenon underscores the significance of cross-domain fault diagnosis for maintaining the reliability and safety of mechanical systems. Due to the absence of labeled data in many operational contexts, there's a clear need for an unsupervised domain adaptation technique that does not rely on labeled information. Moreover, traditional domain adaptation methods presuppose identical label distributions across source and target domains. Nevertheless, real-world engineering scenarios often present novel fault categories out of distribution, thereby challenging the efficacy of established domain adaption methods. To address these challenges, we proposed a pseudo-label assisted contrastive learning model (PLA-CLM) for Unsupervised Open-set Domain Adaptation. Based on contrastive learning, the proposed model effectively minimizes the discrepancy between samples of identical pseudo-label across domains, while simultaneously integrating distance, density, and entropy to isolate out-of-distribution samples. After training, the model adaptively identifies known faults and detects OOD faults using thresholds calculated based on sample distribution. Experimental results on two datasets demonstrate that our method surpasses existing approaches, ensuring enhanced reliability of mechanical systems’ operation and maintenance.

Suggested Citation

  • Wang, Weicheng & Li, Chao & Zhang, Zhipeng & Chen, Jinglong & He, Shuilong & Feng, Yong, 2025. "Pseudo-label assisted contrastive learning model for unsupervised open-set domain adaptation in fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
  • Handle: RePEc:eee:reensy:v:254:y:2025:i:pb:s095183202400721x
    DOI: 10.1016/j.ress.2024.110650
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202400721X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110650?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Biliang & Zhang, Yingjie & Liu, Zhaohua & Wei, Hualiang & Sun, Qingshuai, 2023. "A novel sample selection approach based universal unsupervised domain adaptation for fault diagnosis of rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    2. Zhao, Chao & Shen, Weiming, 2022. "Adaptive open set domain generalization network: Learning to diagnose unknown faults under unknown working conditions," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    3. Ding, Yifei & Zhuang, Jichao & Ding, Peng & Jia, Minping, 2022. "Self-supervised pretraining via contrast learning for intelligent incipient fault detection of bearings," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    4. Shi, Yaowei & Deng, Aidong & Deng, Minqiang & Xu, Meng & Liu, Yang & Ding, Xue & Li, Jing, 2022. "Transferable adaptive channel attention module for unsupervised cross-domain fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    5. Zhang, Xingwu & Zhao, Yu & Yu, Xiaolei & Ma, Rui & Wang, Chenxi & Chen, Xuefeng, 2023. "Weighted domain separation based open set fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    6. Zhao, Chao & Shen, Weiming, 2022. "Dual adversarial network for cross-domain open set fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    7. Zio, Enrico, 2022. "Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    8. Han, Te & Li, Yan-Fu, 2022. "Out-of-distribution detection-assisted trustworthy machinery fault diagnosis approach with uncertainty-aware deep ensembles," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Xiaolei & Zhao, Zhibin & Zhang, Xingwu & Chen, Xuefeng & Cai, Jianbing, 2023. "Statistical identification guided open-set domain adaptation in fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    2. Shi, Yaowei & Deng, Aidong & Deng, Minqiang & Xu, Meng & Liu, Yang & Ding, Xue & Bian, Wenbin, 2023. "Domain augmentation generalization network for real-time fault diagnosis under unseen working conditions," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Lin, Yanzhuo & Wang, Yu & Zhang, Mingquan & Zhao, Ming, 2025. "A robust source-free unsupervised domain adaptation method based on uncertainty measure and adaptive calibration for rotating machinery fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    4. Liu, Shaowei & Jiang, Hongkai & Wu, Zhenghong & Yi, Zichun & Wang, Ruixin, 2023. "Intelligent fault diagnosis of rotating machinery using a multi-source domain adaptation network with adversarial discrepancy matching," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    5. Yu, Aobo & Cai, Bolin & Wu, Qiujie & García, Miguel Martínez & Li, Jing & Chen, Xiangcheng, 2024. "Source-free domain adaptation method for fault diagnosis of rotation machinery under partial information," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    6. Zhang, Qing & Tang, Lv & Xuan, Jianping & Shi, Tielin & Li, Rui, 2023. "An uncertainty relevance metric-based domain adaptation fault diagnosis method to overcome class relevance caused confusion," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    7. Li, Yan-Fu & Wang, Huan & Sun, Muxia, 2024. "ChatGPT-like large-scale foundation models for prognostics and health management: A survey and roadmaps," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    8. Zhao, Zeyun & Wang, Jia & Tao, Qian & Li, Andong & Chen, Yiyang, 2024. "An unknown wafer surface defect detection approach based on Incremental Learning for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    9. Wang, Jianyu & Zeng, Zhiguo & Zhang, Heng & Barros, Anne & Miao, Qiang, 2022. "An hybrid domain adaptation diagnostic network guided by curriculum pseudo labels for electro-mechanical actuator," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    10. Rombach, Katharina & Michau, Gabriel & Fink, Olga, 2023. "Controlled generation of unseen faults for Partial and Open-Partial domain adaptation," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    11. Lu, Biliang & Zhang, Yingjie & Liu, Zhaohua & Wei, Hualiang & Sun, Qingshuai, 2023. "A novel sample selection approach based universal unsupervised domain adaptation for fault diagnosis of rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    12. Ma, Yulin & Yang, Jun & Li, Lei, 2023. "Gradient aligned domain generalization with a mutual teaching teacher-student network for intelligent fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    13. Chen, Pengfei & Zhao, Rongzhen & He, Tianjing & Wei, Kongyuan & Yuan, Jianhui, 2023. "A novel bearing fault diagnosis method based joint attention adversarial domain adaptation," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    14. Wang, Yilin & Li, Yuanxiang & Zhang, Yuxuan & Lei, Jia & Yu, Yifei & Zhang, Tongtong & Yang, Yongshen & Zhao, Honghua, 2024. "Incorporating prior knowledge into self-supervised representation learning for long PHM signal," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    15. Shi, Yaowei & Deng, Aidong & Deng, Minqiang & Xu, Meng & Liu, Yang & Ding, Xue & Li, Jing, 2022. "Transferable adaptive channel attention module for unsupervised cross-domain fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    16. Guo, Chang & Shang, Zuogang & Ren, Jiaxin & Zhao, Zhibin & Ding, Baoqing & Wang, Shibin & Chen, Xuefeng, 2024. "CIS2N: Causal independence and sparse shift network for rotating machinery fault diagnosis in unseen domains," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    17. Xia, Pengcheng & Huang, Yixiang & Tao, Zhiyu & Liu, Chengliang & Liu, Jie, 2023. "A digital twin-enhanced semi-supervised framework for motor fault diagnosis based on phase-contrastive current dot pattern," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    18. Li, Hao & Jiao, Jinyang & Liu, Zongyang & Lin, Jing & Zhang, Tian & Liu, Hanyang, 2025. "Trustworthy Bayesian deep learning framework for uncertainty quantification and confidence calibration: Application in machinery fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    19. Zhou, Chengyu & Fang, Xiaolei, 2023. "A convex two-dimensional variable selection method for the root-cause diagnostics of product defects," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    20. Cheng, Wei & Ahmad, Hassaan & Gao, Lin & Xing, Ji & Nie, Zelin & Chen, Xuefeng & Xu, Zhao & Zhang, Rongyong, 2025. "Diagnostics and Prognostics in Power Plants: A systematic review," Reliability Engineering and System Safety, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:254:y:2025:i:pb:s095183202400721x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.