IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v254y2025ipbs095183202400721x.html
   My bibliography  Save this article

Pseudo-label assisted contrastive learning model for unsupervised open-set domain adaptation in fault diagnosis

Author

Listed:
  • Wang, Weicheng
  • Li, Chao
  • Zhang, Zhipeng
  • Chen, Jinglong
  • He, Shuilong
  • Feng, Yong

Abstract

The operation of mechanical equipment is frequently characterized by complexity and variability, leading to signal domain shifts. This phenomenon underscores the significance of cross-domain fault diagnosis for maintaining the reliability and safety of mechanical systems. Due to the absence of labeled data in many operational contexts, there's a clear need for an unsupervised domain adaptation technique that does not rely on labeled information. Moreover, traditional domain adaptation methods presuppose identical label distributions across source and target domains. Nevertheless, real-world engineering scenarios often present novel fault categories out of distribution, thereby challenging the efficacy of established domain adaption methods. To address these challenges, we proposed a pseudo-label assisted contrastive learning model (PLA-CLM) for Unsupervised Open-set Domain Adaptation. Based on contrastive learning, the proposed model effectively minimizes the discrepancy between samples of identical pseudo-label across domains, while simultaneously integrating distance, density, and entropy to isolate out-of-distribution samples. After training, the model adaptively identifies known faults and detects OOD faults using thresholds calculated based on sample distribution. Experimental results on two datasets demonstrate that our method surpasses existing approaches, ensuring enhanced reliability of mechanical systems’ operation and maintenance.

Suggested Citation

  • Wang, Weicheng & Li, Chao & Zhang, Zhipeng & Chen, Jinglong & He, Shuilong & Feng, Yong, 2025. "Pseudo-label assisted contrastive learning model for unsupervised open-set domain adaptation in fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
  • Handle: RePEc:eee:reensy:v:254:y:2025:i:pb:s095183202400721x
    DOI: 10.1016/j.ress.2024.110650
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202400721X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110650?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:254:y:2025:i:pb:s095183202400721x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.