IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v244y2024ics0951832024000413.html
   My bibliography  Save this article

An unknown wafer surface defect detection approach based on Incremental Learning for reliability analysis

Author

Listed:
  • Zhao, Zeyun
  • Wang, Jia
  • Tao, Qian
  • Li, Andong
  • Chen, Yiyang

Abstract

Wafer maps include information about multiple defect patterns on the wafer surface. Intelligent categorization of the defective wafer is essential for investigating the underlying causes and improving the reliability and safety of the entire system. Recently, convolutional neural networks (CNNs) have been widely employed to construct successful defect detectors by learning from offline defect datasets. However, traditional CNN-based detectors are costly and incapable of unknown production defect detection despite the accurate performance. In this paper, we propose a novel IL-based method, called PIRB, for online unknown wafer defect detection. Specifically, we leverage the neural networks to remember old defect patterns by selectively restricting learning on the important weights. A tiny reference buffer is applied to preserve the experienced wafer defect patterns in the learning process to facilitate the detection accuracy. The experimental results show that the proposed method works well for classifying unknown defects, with a 60% reduction in training time compared to offline learning and a 10% increase in total accuracy compared to the state-of-the-art methods.

Suggested Citation

  • Zhao, Zeyun & Wang, Jia & Tao, Qian & Li, Andong & Chen, Yiyang, 2024. "An unknown wafer surface defect detection approach based on Incremental Learning for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:reensy:v:244:y:2024:i:c:s0951832024000413
    DOI: 10.1016/j.ress.2024.109966
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024000413
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.109966?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:244:y:2024:i:c:s0951832024000413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.