IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v124y2014icp92-104.html
   My bibliography  Save this article

An integrated framework for online diagnostic and prognostic health monitoring using a multistate deterioration process

Author

Listed:
  • Moghaddass, Ramin
  • Zuo, Ming J.

Abstract

Efficient asset management is of paramount importance, particularly for systems with costly downtime and failure. As in energy and capital-intensive industries, the economic loss of downtime and failure is huge, the need for a low-cost and integrated health monitoring system has increased significantly over the years. Timely detection of faults and failures through an efficient prognostics and health management (PHM) framework can lead to appropriate maintenance actions to be scheduled proactively to avoid catastrophic failures and minimize the overall maintenance cost of the systems. This paper aims at practical challenges of online diagnostics and prognostics of mechanical systems under unobservable degradation. First, the elements of a multistate degradation structure are reviewed and then a model selection framework is introduced. Important dynamic performance measures are introduced, which can be used for online diagnostics and prognostics. The effectiveness of the result of this paper is demonstrated with a case study on the health monitoring of turbofan engines.

Suggested Citation

  • Moghaddass, Ramin & Zuo, Ming J., 2014. "An integrated framework for online diagnostic and prognostic health monitoring using a multistate deterioration process," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 92-104.
  • Handle: RePEc:eee:reensy:v:124:y:2014:i:c:p:92-104
    DOI: 10.1016/j.ress.2013.11.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832013003037
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2013.11.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soro, Isaac W. & Nourelfath, Mustapha & Aït-Kadi, Daoud, 2010. "Performance evaluation of multi-state degraded systems with minimal repairs and imperfect preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 95(2), pages 65-69.
    2. Chiquet, Julien & Eid, Mohamed & Limnios, Nikolaos, 2008. "Modelling and estimating the reliability of stochastic dynamical systems with Markovian switching," Reliability Engineering and System Safety, Elsevier, vol. 93(12), pages 1801-1808.
    3. Dong, Ming & He, David, 2007. "Hidden semi-Markov model-based methodology for multi-sensor equipment health diagnosis and prognosis," European Journal of Operational Research, Elsevier, vol. 178(3), pages 858-878, May.
    4. Zhaojun Li & Kailash Kapur, 2012. "Continuous-state reliability measures based on fuzzy sets," IISE Transactions, Taylor & Francis Journals, vol. 44(11), pages 1033-1044.
    5. Guo, Chiming & Wang, Wenbin & Guo, Bo & Si, Xiaosheng, 2013. "A maintenance optimization model for mission-oriented systems based on Wiener degradation," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 183-194.
    6. Huang, Chun-Chen & Yuan, John, 2010. "A two-stage preventive maintenance policy for a multi-state deterioration system," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1255-1260.
    7. Gen, Mitsuo & Yun, YoungSu, 2006. "Soft computing approach for reliability optimization: State-of-the-art survey," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 1008-1026.
    8. Moghaddass, Ramin & Zuo, Ming J., 2012. "A parameter estimation method for a condition-monitored device under multi-state deterioration," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 94-103.
    9. Ward, Eric J., 2008. "A review and comparison of four commonly used Bayesian and maximum likelihood model selection tools," Ecological Modelling, Elsevier, vol. 211(1), pages 1-10.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang, Xiaolei & Paynabar, Kamran & Gebraeel, Nagi, 2017. "Multistream sensor fusion-based prognostics model for systems with single failure modes," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 322-331.
    2. Al-Dahidi, Sameer & Di Maio, Francesco & Baraldi, Piero & Zio, Enrico, 2016. "Remaining useful life estimation in heterogeneous fleets working under variable operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 109-124.
    3. Chen, Jinglong & Jing, Hongjie & Chang, Yuanhong & Liu, Qian, 2019. "Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 372-382.
    4. Liu, Junqiang & Lei, Fan & Pan, Chunlu & Hu, Dongbin & Zuo, Hongfu, 2021. "Prediction of remaining useful life of multi-stage aero-engine based on clustering and LSTM fusion," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    5. Deep, Akash & Zhou, Shiyu & Veeramani, Dharmaraj & Chen, Yong, 2023. "Partially observable Markov decision process-based optimal maintenance planning with time-dependent observations," European Journal of Operational Research, Elsevier, vol. 311(2), pages 533-544.
    6. Zhao, Zhiyao & Quan, Quan & Cai, Kai-Yuan, 2017. "A health performance prediction method of large-scale stochastic linear hybrid systems with small failure probability," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 74-88.
    7. Langeron, Y. & Grall, A. & Barros, A., 2015. "A modeling framework for deteriorating control system and predictive maintenance of actuators," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 22-36.
    8. Eleftheroglou, Nick & Mansouri, Sina Sharif & Loutas, Theodoros & Karvelis, Petros & Georgoulas, George & Nikolakopoulos, George & Zarouchas, Dimitrios, 2019. "Intelligent data-driven prognostic methodologies for the real-time remaining useful life until the end-of-discharge estimation of the Lithium-Polymer batteries of unmanned aerial vehicles with uncerta," Applied Energy, Elsevier, vol. 254(C).
    9. Chen, Gaige & Chen, Jinglong & Zi, Yanyang & Miao, Huihui, 2017. "Hyper-parameter optimization based nonlinear multistate deterioration modeling for deterioration level assessment and remaining useful life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 517-526.
    10. Zhiguo Zeng & Francesco Di Maio & Enrico Zio & Rui Kang, 2017. "A hierarchical decision-making framework for the assessment of the prediction capability of prognostic methods," Journal of Risk and Reliability, , vol. 231(1), pages 36-52, February.
    11. Zhu, Zhicheng & Xiang, Yisha & Zhao, Ming & Shi, Yue, 2023. "Data-driven remanufacturing planning with parameter uncertainty," European Journal of Operational Research, Elsevier, vol. 309(1), pages 102-116.
    12. Wu, Jianing & Yan, Shaoze & Zuo, Ming J., 2016. "Evaluating the reliability of multi-body mechanisms: A method considering the uncertainties of dynamic performance," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 96-106.
    13. Zheng, Niannian & Luan, Xiaoli & Shardt, Yuri A.W. & Liu, Fei, 2024. "Dynamic-controlled principal component analysis for fault detection and automatic recovery," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    14. Duan, Chaoqun & Makis, Viliam & Deng, Chao, 2020. "A two-level Bayesian early fault detection for mechanical equipment subject to dependent failure modes," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    15. Compare, Michele & Baraldi, Piero & Marelli, Paolo & Zio, Enrico, 2020. "Partially observable Markov decision processes for optimal operations of gas transmission networks," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    16. Zhang, Aibo & Wu, Shengnan & Fan, Dongming & Xie, Min & Cai, Baoping & Liu, Yiliu, 2022. "Adaptive testing policy for multi-state systems with application to the degrading final elements in safety-instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    17. Dui, Hongyan & Zhang, Chi & Bai, Guanghan & Chen, Liwei, 2021. "Mission reliability modeling of UAV swarm and its structure optimization based on importance measure," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    18. Eleftheroglou, Nick & Zarouchas, Dimitrios & Loutas, Theodoros & Alderliesten, Rene & Benedictus, Rinze, 2018. "Structural health monitoring data fusion for in-situ life prognosis of composite structures," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 40-54.
    19. Sameer Al-Dahidi & Francesco Di Maio & Piero Baraldi & Enrico Zio, 2017. "A locally adaptive ensemble approach for data-driven prognostics of heterogeneous fleets," Journal of Risk and Reliability, , vol. 231(4), pages 350-363, August.
    20. Zhao, Zeqi & Bin Liang, & Wang, Xueqian & Lu, Weining, 2017. "Remaining useful life prediction of aircraft engine based on degradation pattern learning," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 74-83.
    21. Peng, Weiwen & Li, Yan-Feng & Mi, Jinhua & Yu, Le & Huang, Hong-Zhong, 2016. "Reliability of complex systems under dynamic conditions: A Bayesian multivariate degradation perspective," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 75-87.
    22. Malinowski, Simon & Chebel-Morello, Brigitte & Zerhouni, Noureddine, 2015. "Remaining useful life estimation based on discriminating shapelet extraction," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 279-288.
    23. Yuanju Qu & Zengtao Hou, 2022. "Degradation principle of machines influenced by maintenance," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1521-1530, June.
    24. Ying Liao & Yisha Xiang & Min Wang, 2021. "Health assessment and prognostics based on higher‐order hidden semi‐Markov models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(2), pages 259-276, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moghaddass, Ramin & Zuo, Ming J., 2012. "A parameter estimation method for a condition-monitored device under multi-state deterioration," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 94-103.
    2. Chao-Hui Huang & Chun-Ho Wang, 2016. "Optimization of preventive maintenance for a multi-state degraded system by monitoring component performance," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1151-1170, December.
    3. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    4. Chen, Gaige & Chen, Jinglong & Zi, Yanyang & Miao, Huihui, 2017. "Hyper-parameter optimization based nonlinear multistate deterioration modeling for deterioration level assessment and remaining useful life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 517-526.
    5. Liu, Yu & Liu, Qinzhen & Xie, Chaoyang & Wei, Fayuan, 2019. "Reliability assessment for multi-state systems with state transition dependency," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 276-288.
    6. Ruiz-Castro, Juan Eloy, 2016. "Markov counting and reward processes for analysing the performance of a complex system subject to random inspections," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 155-168.
    7. Zhao, Xiujie & He, Shuguang & Xie, Min, 2018. "Utilizing experimental degradation data for warranty cost optimization under imperfect repair," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 108-119.
    8. Zhang, Hanxiao & Li, Yan-Fu, 2022. "Robust optimization on redundancy allocation problems in multi-state and continuous-state series–parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    9. Qinming Liu & Daigao Li & Wenyi Liu & Tangbin Xia & Jiaxiang Li, 2021. "A Novel Health Prognosis Method for a Power System Based on a High-Order Hidden Semi-Markov Model," Energies, MDPI, vol. 14(24), pages 1-19, December.
    10. Li, Chun-yang & Chen, Xun & Yi, Xiao-shan & Tao, Jun-yong, 2010. "Heterogeneous redundancy optimization for multi-state series–parallel systems subject to common cause failures," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 202-207.
    11. Sorce, A. & Greco, A. & Magistri, L. & Costamagna, P., 2014. "FDI oriented modeling of an experimental SOFC system, model validation and simulation of faulty states," Applied Energy, Elsevier, vol. 136(C), pages 894-908.
    12. Chen, Yiming & Liu, Yu & Jiang, Tao, 2021. "Optimal maintenance strategy for multi-state systems with single maintenance capacity and arbitrarily distributed maintenance time," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    13. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    14. Debasis Bhattacharya & Soma Roychowdhury, 2017. "A redundancy strategy for minimizing cost in systems with non-disjoint subsystems under reliability constraint," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 645-655, November.
    15. Armstrong, Doug P. & Brooks, Ronald J., 2013. "Application of hierarchical biphasic growth models to long-term data for snapping turtles," Ecological Modelling, Elsevier, vol. 250(C), pages 119-125.
    16. Shen, Jingyuan & Cui, Lirong & Ma, Yizhong, 2019. "Availability and optimal maintenance policy for systems degrading in dynamic environments," European Journal of Operational Research, Elsevier, vol. 276(1), pages 133-143.
    17. Niu, Gang & Yang, Bo-Suk & Pecht, Michael, 2010. "Development of an optimized condition-based maintenance system by data fusion and reliability-centered maintenance," Reliability Engineering and System Safety, Elsevier, vol. 95(7), pages 786-796.
    18. Dehayem Nodem, F.I. & Kenné, J.P. & Gharbi, A., 2011. "Simultaneous control of production, repair/replacement and preventive maintenance of deteriorating manufacturing systems," International Journal of Production Economics, Elsevier, vol. 134(1), pages 271-282, November.
    19. Wang, Pingping & Tang, Yincai & Joo Bae, Suk & He, Yong, 2018. "Bayesian analysis of two-phase degradation data based on change-point Wiener process," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 244-256.
    20. Nourelfath, Mustapha & Châtelet, Eric & Nahas, Nabil, 2012. "Joint redundancy and imperfect preventive maintenance optimization for series–parallel multi-state degraded systems," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 51-60.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:124:y:2014:i:c:p:92-104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.