IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v242y2024ics0951832023006348.html
   My bibliography  Save this article

A novel bearing fault diagnosis approach using the Gaussian mixture model and the weighted principal component analysis

Author

Listed:
  • Chaleshtori, Amir Eshaghi
  • Aghaie, Abdollah

Abstract

The efficient diagnosis of bearing faults requires the extraction of informative features. This paper presents a novel approach that combines Weighted Principal Component Analysis (WPCA) with the Gaussian Mixture Model (GMM) for bearing fault diagnosis. The method employs GMM as a fault classifier, aiming to enhance both efficiency and diagnostic accuracy. The proposed algorithm, Expectation Selection Maximization (ESM), introduces a feature selection step to identify the most relevant features for effective bearing fault detection. Specifically, the suggested algorithm utilizes the conditional entropy divergence indicator, a statistical metric, to quantify the significance of features in detecting bearing faults. To validate the effectiveness of this approach, two distinct case studies are conducted using datasets obtained from the University of Ottawa and Case Western Reserve University (CWRU). These datasets encompass a wide range of bearing working conditions, providing a comprehensive evaluation. Experimental results underscore the merits of the approach, achieving an average accuracy rate of 93% for the University of Ottawa dataset and 80% for the CWRU dataset. Furthermore, the findings highlight the superior performance of the proposed method compared to alternative techniques, as evidenced by the receiver operating characteristic (ROC) curve metric.

Suggested Citation

  • Chaleshtori, Amir Eshaghi & Aghaie, Abdollah, 2024. "A novel bearing fault diagnosis approach using the Gaussian mixture model and the weighted principal component analysis," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023006348
    DOI: 10.1016/j.ress.2023.109720
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023006348
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109720?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023006348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.