A deep learning methodology based on adaptive multiscale CNN and enhanced highway LSTM for industrial process fault diagnosis
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2024.110208
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhang, Liangwei & Lin, Jing & Shao, Haidong & Zhang, Zhicong & Yan, Xiaohui & Long, Jianyu, 2021. "End-to-end unsupervised fault detection using a flow-based model," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
- Yang, Zhe & Baraldi, Piero & Zio, Enrico, 2022. "A method for fault detection in multi-component systems based on sparse autoencoder-based deep neural networks," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
- Melani, Arthur Henrique de Andrade & Michalski, Miguel Angelo de Carvalho & da Silva, Renan Favarão & de Souza, Gilberto Francisco Martha, 2021. "A framework to automate fault detection and diagnosis based on moving window principal component analysis and Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
- Tang, Shengnan & Zhu, Yong & Yuan, Shouqi, 2022. "Intelligent fault identification of hydraulic pump using deep adaptive normalized CNN and synchrosqueezed wavelet transform," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
- Panjapornpon, Chanin & Bardeeniz, Santi & Hussain, Mohamed Azlan, 2023. "Deep learning approach for energy efficiency prediction with signal monitoring reliability for a vinyl chloride monomer process," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
- Xu, Yadong & Yan, Xiaoan & Sun, Beibei & Liu, Zheng, 2022. "Dually attentive multiscale networks for health state recognition of rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
- Zhang, Chen & Hu, Di & Yang, Tao, 2022. "Anomaly detection and diagnosis for wind turbines using long short-term memory-based stacked denoising autoencoders and XGBoost," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
- Wang, Chenxi & Zhang, Yuxiang & Zhao, Zhibin & Chen, Xuefeng & Hu, Jiawei, 2024. "Dynamic model-assisted transferable network for liquid rocket engine fault diagnosis using limited fault samples," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
- Bai, Ruxue & Meng, Zong & Xu, Quansheng & Fan, Fengjie, 2023. "Fractional Fourier and time domain recurrence plot fusion combining convolutional neural network for bearing fault diagnosis under variable working conditions," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Lin & Guo, Wannian & Guo, Junyu & Zheng, Shaocong & Wang, Zhiyuan & Kang, Hooi Siang & Li, He, 2025. "An integrated deep learning model for intelligent recognition of long-distance natural gas pipeline features," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
- Tang, Xueyang & Cai, Xiaopei & Wang, Yuqi & Wang, Pu & Yang, Fei, 2025. "Advanced VTSDREF for vehicle-turnout system dynamic reliability analysis: Integration of hybrid deep learning and adaptive probability density evolution method," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
- Lin, Cuiying & Kong, Yun & Huang, Guoyu & Han, Qinkai & Dong, Mingming & Liu, Hui & Chu, Fulei, 2025. "Generalization classification regularization generative adversarial network for machinery fault diagnostics under data imbalance," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
- Zhang, Shuo & Cao, Yingbin & Tang, Jiali & Zou, Yu & Shi, Huixian & Salzano, Ernesto & Chen, Chao, 2025. "A data-driven approach for jet fire prediction of hydrogen blended natural gas pipelines," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
- Zhang, Jiaxin & Rangaiah, Gade Pandu & Dong, Lichun & Samavedham, Lakshminarayanan, 2025. "An improved industrial fault diagnosis model by integrating enhanced variational mode decomposition with sparse process monitoring method," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
- Yao, Junming & Liang, Wei & Xiao, Zhongmin, 2025. "Research on cross-domain generative diagnosis for oil and gas pipeline defect based on limited field data," Energy, Elsevier, vol. 319(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Lin & Guo, Wannian & Guo, Junyu & Zheng, Shaocong & Wang, Zhiyuan & Kang, Hooi Siang & Li, He, 2025. "An integrated deep learning model for intelligent recognition of long-distance natural gas pipeline features," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
- Li, Gang & Hu, Jiayao & Ding, Yaping & Tang, Aimin & Ao, Jiaxing & Hu, Dalong & Liu, Yang, 2024. "A novel method for fault diagnosis of fluid end of drilling pump under complex working conditions," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
- Chen, Zhen & Zhou, Di & Zio, Enrico & Xia, Tangbin & Pan, Ershun, 2023. "Adaptive transfer learning for multimode process monitoring and unsupervised anomaly detection in steam turbines," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- He, Jiahui & Cheng, Zhijun & Guo, Bo, 2024. "Anomaly detection in telemetry data using a jointly optimal one-class support vector machine with dictionary learning," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
- Xu, Xinlei & Zhang, Junhui & Huang, Weidi & Yu, Bin & Lyu, Fei & Zhang, Xiaolong & Xu, Bing, 2024. "The loose slipper fault diagnosis of variable-displacement pumps under time-varying operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
- Zhu, Yunyi & Xie, Bin & Wang, Anqi & Qian, Zheng, 2025. "Wind turbine fault detection and identification via self-attention-based dynamic graph representation learning and variable-level normalizing flow," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
- Dong, Yutong & Jiang, Hongkai & Wu, Zhenghong & Yang, Qiao & Liu, Yunpeng, 2023. "Digital twin-assisted multiscale residual-self-attention feature fusion network for hypersonic flight vehicle fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
- Coraça, Eduardo M. & Ferreira, Janito V. & Nóbrega, EurÃpedes G.O., 2023. "An unsupervised structural health monitoring framework based on Variational Autoencoders and Hidden Markov Models," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
- Peng, Dandan & Desmet, Wim & Gryllias, Konstantinos, 2025. "Reconstruction-based Deep Unsupervised Adaptive Threshold Support Vector Data Description for wind turbine anomaly detection," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
- Zhou, Haoxuan & Wang, Bingsen & Zio, Enrico & Lei, Zihao & Wen, Guangrui & Chen, Xuefeng, 2025. "Unsupervised anomaly detection of machines operating under time-varying conditions: DCD-VAE enabled feature disentanglement of operating conditions and states," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
- Xu, Yadong & Yan, Xiaoan & Sun, Beibei & Liu, Zheng, 2022. "Dually attentive multiscale networks for health state recognition of rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
- Panjapornpon, Chanin & Bardeeniz, Santi & Hussain, Mohamed Azlan, 2023. "Deep learning approach for energy efficiency prediction with signal monitoring reliability for a vinyl chloride monomer process," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
- Liu, Jie & Xu, Huoyao & Peng, Xiangyu & Wang, Junlang & He, Chaoming, 2023. "Reliable composite fault diagnosis of hydraulic systems based on linear discriminant analysis and multi-output hybrid kernel extreme learning machine," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Zhou, Haoxuan & Wang, Bingsen & Zio, Enrico & Wen, Guangrui & Liu, Zimin & Su, Yu & Chen, Xuefeng, 2023. "Hybrid system response model for condition monitoring of bearings under time-varying operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
- Zhang, Jiaxin & Rangaiah, Gade Pandu & Dong, Lichun & Samavedham, Lakshminarayanan, 2025. "An improved industrial fault diagnosis model by integrating enhanced variational mode decomposition with sparse process monitoring method," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
- Tang, Shengnan & Zhu, Yong & Yuan, Shouqi, 2022. "Intelligent fault identification of hydraulic pump using deep adaptive normalized CNN and synchrosqueezed wavelet transform," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
- Xu, Yadong & Yan, Xiaoan & Feng, Ke & Sheng, Xin & Sun, Beibei & Liu, Zheng, 2022. "Attention-based multiscale denoising residual convolutional neural networks for fault diagnosis of rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
- Zhang, Guowei & Kong, Xianguang & Wang, Qibin & Du, Jingli & Wang, Jinrui & Ma, Hongbo, 2024. "Single domain generalization method based on anti-causal learning for rotating machinery fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
- Zhou, Chengyu & Fang, Xiaolei, 2023. "A convex two-dimensional variable selection method for the root-cause diagnostics of product defects," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
- Floreale, Giovanni & Baraldi, Piero & Lu, Xuefei & Rossetti, Paolo & Zio, Enrico, 2024. "Sensitivity analysis by differential importance measure for unsupervised fault diagnostics," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
More about this item
Keywords
Deep learning; Adaptive multiscale CNN; Enhanced highway LSTM; Fault diagnosis; Industrial process systems;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:249:y:2024:i:c:s0951832024002813. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.