IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v256y2025ics0951832024008196.html
   My bibliography  Save this article

A data-driven approach for jet fire prediction of hydrogen blended natural gas pipelines

Author

Listed:
  • Zhang, Shuo
  • Cao, Yingbin
  • Tang, Jiali
  • Zou, Yu
  • Shi, Huixian
  • Salzano, Ernesto
  • Chen, Chao

Abstract

Hydrogen-blended natural gas (HBNG) pipelines have the potential to achieve safe, efficient large-scale long-distance transportation of hydrogen to end-users. However, blending hydrogen can significantly affect the combustion characteristics of natural gas. In particular, a jet fire is more likely induced by the leakage of HBNG pipelines since hydrogen has a lower minimum ignition energy and is more prone to spontaneous combustion. Furthermore, the characteristic space and time dimension of HBNG jet fire can dramatically change. Nevertheless, little attention has been paid to the prediction of HBNG jet fire characters (e.g., in terms of length, temperature, and heat radiation) mainly due to the lack of experiment data. Besides, a large number of repeated HBNG jet fire experiments is more difficult since HBNG jet fire experiments are expensive and dangerous. To fill the research gap, this study proposes a data-driven methodology to quickly predict the characteristics of HBNG jet fire. First, a computational fluid dynamics (CFD) model is established and validated to obtain enough data for the prediction of jet fire. Then, a machine-learning model is developed based on jet-fire simulation data to predict HBNG jet fire characteristics. A comparison between the machine-learning model and an empirical formula is conducted to validate the effectiveness of the model. The result shows that the developed model improves both the prediction accuracy and enlarges the application range. Therefore, this prediction model can be easily used for consequence analysis of HBNG jet fire and support risk assessment of HBNG natural gas pipelines.

Suggested Citation

  • Zhang, Shuo & Cao, Yingbin & Tang, Jiali & Zou, Yu & Shi, Huixian & Salzano, Ernesto & Chen, Chao, 2025. "A data-driven approach for jet fire prediction of hydrogen blended natural gas pipelines," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:reensy:v:256:y:2025:i:c:s0951832024008196
    DOI: 10.1016/j.ress.2024.110748
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024008196
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110748?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Jie & Lin, Haifei & Li, Shugang & Jin, Hongwei & Zhao, Bo & Liu, Shihao, 2023. "Leakage diagnosis and localization of the gas extraction pipeline based on SA-PSO BP neural network," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    2. Tan, Qiong & Fu, Ming & Wang, Zhengxing & Yuan, Hongyong & Sun, Jinhua, 2024. "A real-time early warning classification method for natural gas leakage based on random forest," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    3. Alfarizi, Muhammad Gibran & Ustolin, Federico & Vatn, Jørn & Yin, Shen & Paltrinieri, Nicola, 2023. "Towards accident prevention on liquid hydrogen: A data-driven approach for releases prediction," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    4. Pan, Yongjun & Sun, Yu & Li, Zhixiong & Gardoni, Paolo, 2023. "Machine learning approaches to estimate suspension parameters for performance degradation assessment using accurate dynamic simulations," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    5. Campari, Alessandro & Ustolin, Federico & Alvaro, Antonio & Paltrinieri, Nicola, 2024. "Inspection of hydrogen transport equipment: A data-driven approach to predict fatigue degradation," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    6. Zhao, Shuaiyu & Duan, Yiling & Roy, Nitin & Zhang, Bin, 2024. "A deep learning methodology based on adaptive multiscale CNN and enhanced highway LSTM for industrial process fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    7. Zhu, Yong-Qiang & Song, Wei & Wang, Han-Bing & Qi, Jian-Tao & Zeng, Rong-Chang & Ren, Hao & Jiang, Wen-Chun & Meng, Hui-Bo & Li, Yu-Xing, 2024. "Advances in reducing hydrogen effect of pipeline steels on hydrogen-blended natural gas transportation: A systematic review of mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Xueyang & Cai, Xiaopei & Wang, Yuqi & Wang, Pu & Yang, Fei, 2025. "Advanced VTSDREF for vehicle-turnout system dynamic reliability analysis: Integration of hybrid deep learning and adaptive probability density evolution method," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    2. Campari, Alessandro & Ustolin, Federico & Alvaro, Antonio & Paltrinieri, Nicola, 2024. "Inspection of hydrogen transport equipment: A data-driven approach to predict fatigue degradation," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    3. Li, Jian & Yang, Zhao & He, Hongxia & Guo, Changzhen & Chen, Yubo & Zhang, Yong, 2024. "Risk causation analysis and prevention strategy of working fluid systems based on accident data and complex network theory," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    4. Bo, Yimin & Bao, Minglei & Ding, Yi & Hu, Yishuang, 2024. "A DNN-based reliability evaluation method for multi-state series-parallel systems considering semi-Markov process," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    5. Liu, Chengfei & Wang, Enyuan & Li, Zhonghui & Zang, Zesheng & Li, Baolin & Yin, Shan & Zhang, Chaolin & Liu, Yubing & Wang, Jinxin, 2025. "Research on multi-factor adaptive integrated early warning method for coal mine disaster risks based on multi-task learning," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    6. Wang, Lin & Guo, Wannian & Guo, Junyu & Zheng, Shaocong & Wang, Zhiyuan & Kang, Hooi Siang & Li, He, 2025. "An integrated deep learning model for intelligent recognition of long-distance natural gas pipeline features," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    7. Lin, Cuiying & Kong, Yun & Huang, Guoyu & Han, Qinkai & Dong, Mingming & Liu, Hui & Chu, Fulei, 2025. "Generalization classification regularization generative adversarial network for machinery fault diagnostics under data imbalance," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    8. Jing, Qi & Song, Xingwang & Sun, Bingcai & Li, Yuntao & Zhang, Laibin, 2025. "Efficient estimation of natural gas leakage source terms using physical information and improved particle filtering," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    9. Ye, Lin & Wang, Chengyou & Zhou, Xiao & Jiang, Baocheng & Yu, Changsong & Qin, Zhiliang, 2025. "Natural gas pipeline weak leakage detection based on negative pressure wave decomposition and feature enhancement," Reliability Engineering and System Safety, Elsevier, vol. 257(PB).
    10. Xu, Dongxin & Pan, Yongjun & Zhang, Xiaoxi & Dai, Wei & Liu, Binghe & Shuai, Qi, 2024. "Data-driven modelling and evaluation of a battery-pack system’s mechanical safety against bottom cone impact," Energy, Elsevier, vol. 290(C).
    11. Bi, Yubo & Wu, Qiulan & Wang, Shilu & Shi, Jihao & Cong, Haiyong & Ye, Lili & Gao, Wei & Bi, Mingshu, 2023. "Hydrogen leakage location prediction at hydrogen refueling stations based on deep learning," Energy, Elsevier, vol. 284(C).
    12. Zhang, Xiaoxi & Pan, Yongjun & Zhou, Junxiao & Li, Zhixiong & Liao, Tianjun & Li, Jie, 2024. "Forward and reverse design of adhesive in batteries via dynamics and machine learning algorithms for enhanced mechanical safety," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    13. Alshboul, Odey & Shehadeh, Ali & Almasabha, Ghassan, 2025. "Reliability of information-theoretic displacement detection and risk classification for enhanced slope stability and safety at highway construction sites," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    14. Jiang, Fengyuan & Dong, Sheng, 2025. "Development of a CNN-based integrated surrogate model in evaluating the damage of buried pipeline under impact loads, considering the soil spatial variability," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    15. He, Zhongze & Wang, Shaoping & Shi, Jian & Liu, Di & Duan, Xiaochuan & Shang, Yaoxing, 2025. "Physics-informed neural network supported wiener process for degradation modeling and reliability prediction," Reliability Engineering and System Safety, Elsevier, vol. 258(C).
    16. Zhang, Yunyi & Du, Ye & He, Wei & Zhang, Le & Wu, Runfang, 2025. "A new belief rule base model with uncertainty parameters," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    17. Dong, Yutong & Jiang, Hongkai & Yao, Renhe & Mu, Mingzhe & Yang, Qiao, 2024. "Rolling bearing intelligent fault diagnosis towards variable speed and imbalanced samples using multiscale dynamic supervised contrast learning," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    18. Miao, Xingyuan & Zhao, Hong, 2023. "Novel method for residual strength prediction of defective pipelines based on HTLBO-DELM model," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    19. Zhu, Xiaoyan & Hao, Yaqian & Bae, Suk Joo, 2025. "Stochastic programming on joint optimization of redundancy design and condition-based maintenance for continuously degrading systems subject to uncertain usage stresses," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    20. Yao, Junming & Liang, Wei & Xiao, Zhongmin, 2025. "Research on cross-domain generative diagnosis for oil and gas pipeline defect based on limited field data," Energy, Elsevier, vol. 319(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:256:y:2025:i:c:s0951832024008196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.