IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v260y2025ics0951832025001929.html
   My bibliography  Save this article

Efficient estimation of natural gas leakage source terms using physical information and improved particle filtering

Author

Listed:
  • Jing, Qi
  • Song, Xingwang
  • Sun, Bingcai
  • Li, Yuntao
  • Zhang, Laibin

Abstract

Natural gas pipeline leaks can cause fires or explosions, making quick and accurate leak source identification critical for emergency response. This study develops a natural gas pipeline leakage source inversion model, where a Proper Orthogonal Decomposition-Physics-Informed Neural Network (POD-PINN) is integrated as the gas forward diffusion model. The inversion model combines an improved particle filtering algorithm, gas sensor data, and the POD-PINN, enabling rapid identification of leakage source terms. The gas source estimation results using POD-PINN and the Gaussian model as forward models were compared across different scenarios, and the impact of sensor errors on the inversion model was analyzed. Using POD-PINN as the forward model preserves accuracy while improving computational efficiency. The inclusion of a Gaussian kernel function and Markov Chain Monte Carlo (MCMC) method addresses degeneracy and impoverishment issues in standard particle filtering, preventing convergence to local optima. Results show that, across different scenarios, spatial position estimation errors are under 5%, and source strength errors are below 8%. When sensor measurement error is exceeds 0.5, the model cannot accurately estimate all source parameters. The proposed inversion model is subjected to convergence analysis, confirming its feasibility.

Suggested Citation

  • Jing, Qi & Song, Xingwang & Sun, Bingcai & Li, Yuntao & Zhang, Laibin, 2025. "Efficient estimation of natural gas leakage source terms using physical information and improved particle filtering," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025001929
    DOI: 10.1016/j.ress.2025.110989
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025001929
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110989?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025001929. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.