IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v260y2025ics0951832025002248.html
   My bibliography  Save this article

Stochastic programming on joint optimization of redundancy design and condition-based maintenance for continuously degrading systems subject to uncertain usage stresses

Author

Listed:
  • Zhu, Xiaoyan
  • Hao, Yaqian
  • Bae, Suk Joo

Abstract

This study investigates the joint optimization of system redundancy design and maintenance policies under uncertain usage stresses, using various stochastic programming models and stochastic-degradation-based reliability models. It is the first to address condition-based maintenance (CBM) policies, which outperform traditional age-based maintenance by reducing over- and tardy maintenance. Three two-stage stochastic programming models are developed. The first is a risk-neutral model aiming to minimize the expected system life-cycle cost across various usage stresses. The second is a risk-averse model using conditional value-at-risk to find solutions that perform well under the worst stresses. The third model also employs a risk-averse approach, using the upper partial mean to seek robust solutions for adverse stresses. The first-stage decision variables are subsystem redundancy levels, influencing CBM policies in the second stage. These CBM decisions depend on subsystem degradation levels and usage stresses. The long-run maintenance and failure cost rate is modeled as a recourse function, affecting redundancy allocation decisions. A numerical study demonstrates that the risk-averse strategies effectively mitigate the cost of worst scenarios without significantly increasing expected system life-cycle cost over all the scenarios. The redundancy level is high under a high risk aversion and can remain stable in a certain range of risk aversion. When the risk aversion is minor and the primary goal is the lowest expected lifetime-cycle cost, the redundancy design from risk-neutral model is preferred. The two risk-averse models would not generate the same redundancy design, no matter how to adjust the risk-averse parameters in the two models. Thus, the two risk-averse methods cannot be used exchangeable. The model using conditional value-at-risk is suitable for the cases where severe usage stresses could happen and the bad consequence cannot be tolerated. The model with upper partial mean is good for stabilizing the performances under all the adverse scenarios.

Suggested Citation

  • Zhu, Xiaoyan & Hao, Yaqian & Bae, Suk Joo, 2025. "Stochastic programming on joint optimization of redundancy design and condition-based maintenance for continuously degrading systems subject to uncertain usage stresses," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002248
    DOI: 10.1016/j.ress.2025.111023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025002248
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.111023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Xiaoyan & Wang, Jun & Yuan, Tao, 2019. "Design and maintenance for the data storage system considering system rebuilding process," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    2. Zhang, Nan & Deng, Yingjun & Liu, Bin & Zhang, Jun, 2023. "Condition-based maintenance for a multi-component system in a dynamic operating environment," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    3. Yousefi, Nooshin & Coit, David W. & Song, Sanling, 2020. "Reliability analysis of systems considering clusters of dependent degrading components," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    4. Sharifi, Mani & Taghipour, Sharareh, 2024. "Redundancy allocation problem with a mix of components for a multi-state system and continuous performance level components," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    5. Shen, Yilan & Zhang, Xi & Shi, Leyuan, 2022. "Joint optimization of production and maintenance for a serial–parallel hybrid two-stage production system," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    6. Chatwattanasiri, Nida & Coit, David W. & Wattanapongsakorn, Naruemon, 2016. "System redundancy optimization with uncertain stress-based component reliability: Minimization of regret," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 73-83.
    7. Fallahi, F. & Bakir, I. & Yildirim, M. & Ye, Z., 2022. "A chance-constrained optimization framework for wind farms to manage fleet-level availability in condition based maintenance and operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Zhang, Zhengxin & Li, Huiqin & Li, Tianmei & Zhang, Jianxun & Si, Xiaosheng, 2024. "An optimal condition-based maintenance policy for nonlinear stochastic degrading systems," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    9. Hanxiao Zhang & Yan-Fu Li & Min Xie & Chen Zhang, 2024. "Two-stage distributionally robust optimization for joint system design and maintenance scheduling in high-consequence systems," IISE Transactions, Taylor & Francis Journals, vol. 56(8), pages 793-810, August.
    10. Zhao, Xuejing & Fouladirad, Mitra & Bérenguer, Christophe & Bordes, Laurent, 2010. "Condition-based inspection/replacement policies for non-monotone deteriorating systems with environmental covariates," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 921-934.
    11. Zhao, Xian & Wang, Chen & Wang, Siqi, 2024. "Reliability analysis of multi-state balanced systems with standby components switching mechanism," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    12. Gan, Shuyuan & Hu, Hengheng & Coit, David W., 2023. "Maintenance optimization considering the mutual dependence of the environment and system with decreasing effects of imperfect maintenance," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    13. Jiaxiang Cai & Zhi-Sheng Ye, 2021. "Optimal design of accelerated destructive degradation tests with block effects," IISE Transactions, Taylor & Francis Journals, vol. 54(1), pages 73-90, October.
    14. Hao Peng & Qianmei Feng & David Coit, 2010. "Reliability and maintenance modeling for systems subject to multiple dependent competing failure processes," IISE Transactions, Taylor & Francis Journals, vol. 43(1), pages 12-22.
    15. Uit Het Broek, Michiel A.J. & Teunter, Ruud H. & de Jonge, Bram & Veldman, Jasper, 2021. "Joint condition-based maintenance and load-sharing optimization for two-unit systems with economic dependency," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1119-1131.
    16. Shuming Wang & Yan-Fu Li & Tong Jia, 2020. "Distributionally Robust Design for Redundancy Allocation," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 620-640, July.
    17. Luo, Yi & Zhao, Xiujie & Liu, Bin & He, Shuguang, 2024. "Condition-based maintenance policy for systems under dynamic environment," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    18. Sathishkumar Nachimuthu & Ming J. Zuo & Yi Ding, 2019. "A Decision-making Model for Corrective Maintenance of Offshore Wind Turbines Considering Uncertainties," Energies, MDPI, vol. 12(8), pages 1-13, April.
    19. Wang, Wei & Wu, Zhiying & Xiong, Junlin & Xu, Yaofeng, 2018. "Redundancy optimization of cold-standby systems under periodic inspection and maintenance," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 394-402.
    20. Zhenfang Liu & Yang Zhou & Gordon Huang & Bin Luo, 2019. "Risk Aversion Based Inexact Stochastic Dynamic Programming Approach for Water Resources Management Planning under Uncertainty," Sustainability, MDPI, vol. 11(24), pages 1-22, December.
    21. Pan, Yongjun & Sun, Yu & Li, Zhixiong & Gardoni, Paolo, 2023. "Machine learning approaches to estimate suspension parameters for performance degradation assessment using accurate dynamic simulations," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    22. Jiachen Shi & Heraldo Rozas & Murat Yildirim & Nagi Gebraeel, 2023. "A stochastic programming model for jointly optimizing maintenance and spare parts inventory for IoT applications," IISE Transactions, Taylor & Francis Journals, vol. 55(4), pages 419-431, April.
    23. Zhang, Jianchun & Zhao, Yu & Ma, Xiaobing, 2020. "Reliability modeling methods for load-sharing k-out-of-n system subject to discrete external load," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    24. Jiang, Renyan & Li, Fengping & Xue, Wei & Cao, Yu & Zhang, Kunpeng, 2023. "A robust mean cumulative function estimator and its application to overhaul time optimization for a fleet of heterogeneous repairable systems," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    25. Bin Liu & Min Xie & Way Kuo, 2016. "Reliability modeling and preventive maintenance of load-sharing systemswith degrading components," IISE Transactions, Taylor & Francis Journals, vol. 48(8), pages 699-709, August.
    26. Zhang, Hanxiao & Li, Yan-Fu, 2022. "Robust optimization on redundancy allocation problems in multi-state and continuous-state series–parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    27. Bei, Xiaoqiang & Zhu, Xiaoyan & Coit, David W., 2019. "A risk-averse stochastic program for integrated system design and preventive maintenance planning," European Journal of Operational Research, Elsevier, vol. 276(2), pages 536-548.
    28. Zhao, Xian & Chai, Xiaofei & Cao, Shuai & Qiu, Qingan, 2023. "Dynamic loading and condition-based maintenance policies for multi-state systems with periodic inspection," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    29. Zhou, Jian & Coit, David W. & Felder, Frank A. & Tsianikas, Stamatis, 2023. "Combined optimization of system reliability improvement and resilience with mixed cascading failures in dependent network systems," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    30. Zhao, Xiujie & Chen, Piao & Gaudoin, Olivier & Doyen, Laurent, 2021. "Accelerated degradation tests with inspection effects," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1099-1114.
    31. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    32. Pang, Zhenan & Si, Xiaosheng & Hu, Changhua & Du, Dangbo & Pei, Hong, 2021. "A Bayesian Inference for Remaining Useful Life Estimation by Fusing Accelerated Degradation Data and Condition Monitoring Data," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Yaxin & Fouladirad, Mitra & Grall, Antoine, 2025. "Mathematical modeling of solar farm performance degradation in a dynamic environment for condition-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    2. Luo, Yi & Zhao, Xiujie & Liu, Bin & He, Shuguang, 2024. "Condition-based maintenance policy for systems under dynamic environment," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    3. Zhang, Wenyu & He, Shuguang & Zhang, Xiaohong & Zhao, Xing, 2024. "Joint optimization of job scheduling, condition-based maintenance planning, and spare parts ordering for degrading production systems," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    4. Zhao, Xian & Liu, Zhenru & Wu, Congshan & Jin, Tongtong, 2025. "Joint optimization of maintenance and speed selection for transportation systems," Reliability Engineering and System Safety, Elsevier, vol. 257(PB).
    5. Karabağ, Oktay & Bulut, Önder & Toy, Ayhan Özgür & Fadıloğlu, Mehmet Murat, 2024. "An efficient procedure for optimal maintenance intervention in partially observable multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    6. Zheng, Rui & Fang, Haojun & Song, Yanying, 2024. "A condition-based maintenance policy for a two-component balanced system with dependent degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    7. Alotaibi, Naif M. & Scarf, Philip & Cavalcante, Cristiano A.V. & Lopes, Rodrigo S. & de Oliveira e Silva, André Luiz & Rodrigues, Augusto J.S. & Alyami, Salem A., 2023. "Modified-opportunistic inspection and the case of remote, groundwater well-heads," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    8. Zhang, Hanxiao & Li, Yan-Fu, 2022. "Robust optimization on redundancy allocation problems in multi-state and continuous-state series–parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    9. Chang, Miaoxin & Huang, Xianzhen & Coolen, Frank PA & Coolen-Maturi, Tahani, 2023. "New reliability model for complex systems based on stochastic processes and survival signature," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1349-1364.
    10. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    11. Wang, Jun & Fu, Yuqiang & Zhou, Jian & Yang, Lechang & Yang, Yating, 2025. "Condition-based maintenance for redundant systems considering spare inventory with stochastic lead time," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    12. Zhao, Xian & Li, Rong & Han, He & Qiu, Qingan, 2025. "Condition-based switching, loading, and age-based maintenance policies for standby systems," European Journal of Operational Research, Elsevier, vol. 321(2), pages 565-585.
    13. Zhang, Qin & Liu, Yu & Xiang, Yisha & Xiahou, Tangfan, 2024. "Reinforcement learning in reliability and maintenance optimization: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    14. Ma, Weining & Zhang, Qin & Xiahou, Tangfan & Liu, Yu & Jia, Xisheng, 2023. "Integrated selective maintenance and task assignment optimization for multi-state systems executing multiple missions," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    15. Eslami Baladeh, Aliakbar & Taghipour, Sharareh, 2022. "Reliability optimization of dynamic k-out-of-n systems with competing failure modes," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    16. He, Zhichao & Wang, Yanhui & Sun, Wanhua & Hao, Yucheng & Xia, Weifu, 2025. "A proactive opportunistic maintenance decision model based on reliability in train systems," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    17. Ling, Chunyan & Yang, Lechang & Feng, Kaixuan & Kuo, Way, 2023. "Survival signature based robust redundancy allocation under imprecise probability," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    18. Zhang, Jianchun & Zhao, Yu & Ma, Xiaobing, 2020. "Reliability modeling methods for load-sharing k-out-of-n system subject to discrete external load," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    19. Ghorbani, Milad & Nourelfath, Mustapha & Gendreau, Michel, 2022. "A two-stage stochastic programming model for selective maintenance optimization," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    20. Cheng, Wanqing & Zhao, Xiujie, 2023. "Maintenance optimization for dependent two-component degrading systems subject to imperfect repair," Reliability Engineering and System Safety, Elsevier, vol. 240(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.